
Hardness of 4-colouring G -colourable graphs

Gianluca Tasinato∗

Joint work with:
S. Avvakumov†, M. Filakovský‡, J. Opřsal§, U. Wagner∗

†Tel Aviv University; ‡Masaryk University; §University of Birmingham; ∗ISTA

Approximate graph colourings

Graph = undirected simple finite graph on n vertices.

Deciding if a given graph is 3-colourable is a classical NP-hard
problem. [Karp; ’72]

k Complexity
4 NP-hard [Khanna, Linial, Safra; ’00]

5 NP-hard [Buĺın, Krokhin, Opřsal; ’19]

6 ??? NP-hard modulo UGC

...
...

[Dinur, Mossel, Regev; ’09]

[Guruswami, Sandeep; ’20]

[Breverman, Khot, Lifshitz, Mulzer; ’21]

n0.19996 P [Kawarabayashi, Thorup; ’17]

1

Approximate graph colourings

Graph = undirected simple finite graph on n vertices.

Deciding if a given graph is 3-colourable is a classical NP-hard
problem. [Karp; ’72]

Approximate Graph Colouring problem [Search]: Fix k ≥ 4.
Given a 3-colourable graph G , find a k-colouring.

k Complexity
4 NP-hard [Khanna, Linial, Safra; ’00]

5 NP-hard [Buĺın, Krokhin, Opřsal; ’19]

6 ??? NP-hard modulo UGC

...
...

[Dinur, Mossel, Regev; ’09]

[Guruswami, Sandeep; ’20]

[Breverman, Khot, Lifshitz, Mulzer; ’21]

n0.19996 P [Kawarabayashi, Thorup; ’17]

1

Approximate graph colourings

Graph = undirected simple finite graph on n vertices.

Deciding if a given graph is 3-colourable is a classical NP-hard
problem. [Karp; ’72]

Approximate Graph Colouring problem [Decision]: Fix k ≥ 4.
Given a graph G , decide if G is 3-colourable or not even k-colourable.

k Complexity
4 NP-hard [Khanna, Linial, Safra; ’00]

5 NP-hard [Buĺın, Krokhin, Opřsal; ’19]

6 ??? NP-hard modulo UGC

...
...

[Dinur, Mossel, Regev; ’09]

[Guruswami, Sandeep; ’20]

[Breverman, Khot, Lifshitz, Mulzer; ’21]

n0.19996 P [Kawarabayashi, Thorup; ’17]

1

Approximate graph colourings

Graph = undirected simple finite graph on n vertices.

Deciding if a given graph is 3-colourable is a classical NP-hard
problem. [Karp; ’72]

Approximate Graph Colouring problem [Decision]: Fix k ≥ 4.
Given a graph G , decide if G is 3-colourable or not even k-colourable.

k Complexity
4 NP-hard [Khanna, Linial, Safra; ’00]

5 NP-hard [Buĺın, Krokhin, Opřsal; ’19]

6 ??? NP-hard modulo UGC

...
...

[Dinur, Mossel, Regev; ’09]

[Guruswami, Sandeep; ’20]

[Breverman, Khot, Lifshitz, Mulzer; ’21]

n0.19996 P [Kawarabayashi, Thorup; ’17]

1

Approximate graph colourings

Graph = undirected simple finite graph on n vertices.

Deciding if a given graph is 3-colourable is a classical NP-hard
problem. [Karp; ’72]

Approximate Graph Colouring problem [Decision]: Fix k ≥ 4.
Given a graph G , decide if G is 3-colourable or not even k-colourable.

k Complexity
4 NP-hard [Khanna, Linial, Safra; ’00]

5 NP-hard [Buĺın, Krokhin, Opřsal; ’19]

6 ??? NP-hard modulo UGC

...
...

[Dinur, Mossel, Regev; ’09]

[Guruswami, Sandeep; ’20]

[Breverman, Khot, Lifshitz, Mulzer; ’21]

n0.19996 P [Kawarabayashi, Thorup; ’17]

1

Approximate graph colourings

Graph = undirected simple finite graph on n vertices.

Deciding if a given graph is 3-colourable is a classical NP-hard
problem. [Karp; ’72]

Approximate Graph Colouring problem [Decision]: Fix k ≥ 4.
Given a graph G , decide if G is 3-colourable or not even k-colourable.

k Complexity
4 NP-hard [Khanna, Linial, Safra; ’00]

5 NP-hard [Buĺın, Krokhin, Opřsal; ’19]

6 ??? NP-hard modulo UGC

...
...

[Dinur, Mossel, Regev; ’09]

[Guruswami, Sandeep; ’20]

[Breverman, Khot, Lifshitz, Mulzer; ’21]

n0.19996 P [Kawarabayashi, Thorup; ’17]

1

Approximate graph colourings

Graph = undirected simple finite graph on n vertices.

Deciding if a given graph is 3-colourable is a classical NP-hard
problem. [Karp; ’72]

Approximate Graph Colouring problem [Decision]: Fix k ≥ 4.
Given a graph G , decide if G is 3-colourable or not even k-colourable.

k Complexity
4 NP-hard [Khanna, Linial, Safra; ’00]

5 NP-hard [Buĺın, Krokhin, Opřsal; ’19]

6 ??? NP-hard modulo UGC

...
...

[Dinur, Mossel, Regev; ’09]

[Guruswami, Sandeep; ’20]

[Breverman, Khot, Lifshitz, Mulzer; ’21]

n0.19996 P [Kawarabayashi, Thorup; ’17]

1

Graph homomorphisms

Definition (Graph Homomorphism)

Given G = (VG ;EG) and H = (VH ;EH) graphs, a graph
homomorphism is a map f : VG → VH that respects edges, i.e.
for all (u, v) ∈ EG , (f (u), f (v)) ∈ EH .

Example: k-colouring of G is graph homomorphism G → Kk .

Kk = complete graph on k vertices.

2

Graph homomorphisms

Definition (Graph Homomorphism)

Given G = (VG ;EG) and H = (VH ;EH) graphs, a graph
homomorphism is a map f : VG → VH that respects edges, i.e.
for all (u, v) ∈ EG , (f (u), f (v)) ∈ EH .

Example: k-colouring of G is graph homomorphism G → Kk .

A

BC

D

G

F

E

?

Kk = complete graph on k vertices. 2

Graph homomorphisms

Definition (Graph Homomorphism)

Given G = (VG ;EG) and H = (VH ;EH) graphs, a graph
homomorphism is a map f : VG → VH that respects edges, i.e.
for all (u, v) ∈ EG , (f (u), f (v)) ∈ EH .

Example: k-colouring of G is graph homomorphism G → Kk .

A

BC

D

G

F

E

Kk = complete graph on k vertices. 2

Promise Graph Homomorphism

Let G , H graphs such that G → H. The (decision) Promise Graph
Homomorphism Problem PCSP (G ,H) is the following problem:

Input: a graph I Output: Yes if I → G ; No if I ↛ H

Conj: If G and H are non bipartite graphs with G → H, then
PCSP(G ,H) is NP-hard. [Brakensiek, Guruswami; ’18]

Rmk: It is enough to show it for G = Cℓ (ℓ odd) and H = Kk .

Theorem (Krokhin, Opřsal, Wrochna, Živný; ’23)

For any 3-colourable non bipartite graph G, PCSP(G ,K3) is
NP-hard.

Theorem (Avvakumov, Filakovský, Opřsal, T., Wagner; ’25+)

For any 4-colourable non bipartite graph G, PCSP(G ,K4) is
NP-hard.

3

Promise Graph Homomorphism

Let G , H graphs such that G → H. The (decision) Promise Graph
Homomorphism Problem PCSP (G ,H) is the following problem:

Input: a graph I Output: Yes if I → G ; No if I ↛ H
Conj: If G and H are non bipartite graphs with G → H, then
PCSP(G ,H) is NP-hard. [Brakensiek, Guruswami; ’18]

Rmk: It is enough to show it for G = Cℓ (ℓ odd) and H = Kk .

Theorem (Krokhin, Opřsal, Wrochna, Živný; ’23)

For any 3-colourable non bipartite graph G, PCSP(G ,K3) is
NP-hard.

Theorem (Avvakumov, Filakovský, Opřsal, T., Wagner; ’25+)

For any 4-colourable non bipartite graph G, PCSP(G ,K4) is
NP-hard.

3

Promise Graph Homomorphism

Let G , H graphs such that G → H. The (decision) Promise Graph
Homomorphism Problem PCSP (G ,H) is the following problem:

Input: a graph I Output: Yes if I → G ; No if I ↛ H
Conj: If G and H are non bipartite graphs with G → H, then
PCSP(G ,H) is NP-hard. [Brakensiek, Guruswami; ’18]

Rmk: It is enough to show it for G = Cℓ (ℓ odd) and H = Kk .

Theorem (Krokhin, Opřsal, Wrochna, Živný; ’23)

For any 3-colourable non bipartite graph G, PCSP(G ,K3) is
NP-hard.

Theorem (Avvakumov, Filakovský, Opřsal, T., Wagner; ’25+)

For any 4-colourable non bipartite graph G, PCSP(G ,K4) is
NP-hard.

3

Promise Graph Homomorphism

Let G , H graphs such that G → H. The (decision) Promise Graph
Homomorphism Problem PCSP (G ,H) is the following problem:

Input: a graph I Output: Yes if I → G ; No if I ↛ H
Conj: If G and H are non bipartite graphs with G → H, then
PCSP(G ,H) is NP-hard. [Brakensiek, Guruswami; ’18]

Rmk: It is enough to show it for G = Cℓ (ℓ odd) and H = Kk .

Theorem (Krokhin, Opřsal, Wrochna, Živný; ’23)

For any 3-colourable non bipartite graph G, PCSP(G ,K3) is
NP-hard.

Theorem (Avvakumov, Filakovský, Opřsal, T., Wagner; ’25+)

For any 4-colourable non bipartite graph G, PCSP(G ,K4) is
NP-hard.

3

Promise Graph Homomorphism

Let G , H graphs such that G → H. The (decision) Promise Graph
Homomorphism Problem PCSP (G ,H) is the following problem:

Input: a graph I Output: Yes if I → G ; No if I ↛ H
Conj: If G and H are non bipartite graphs with G → H, then
PCSP(G ,H) is NP-hard. [Brakensiek, Guruswami; ’18]

Rmk: It is enough to show it for G = Cℓ (ℓ odd) and H = Kk .

Theorem (Krokhin, Opřsal, Wrochna, Živný; ’23)

For any 3-colourable non bipartite graph G, PCSP(G ,K3) is
NP-hard.

Theorem (Avvakumov, Filakovský, Opřsal, T., Wagner; ’25+)

For any 4-colourable non bipartite graph G, PCSP(G ,K4) is
NP-hard.

3

Proof Structure

▶ By a general algebraic theory of PCSPs1, the complexity of
PCSP(Cℓ,K4) is governed by its polymorphisms

f : Cn
ℓ → K4.

1
[Barto, Buĺın, Krokhin, Opřsal; ’21]

4

Proof Structure

▶ By a general algebraic theory of PCSPs1, the complexity of
PCSP(Cℓ,K4) is governed by its polymorphisms

f : Cn
ℓ → K4.

Cn
ℓ is categorical/tensor product: vertices of Cn

ℓ are n-tuples of
vertices, edge between two tuples when each coordinate form an
edge.

1
[Barto, Buĺın, Krokhin, Opřsal; ’21]

4

Proof Structure

▶ By a general algebraic theory of PCSPs1, the complexity of
PCSP(Cℓ,K4) is governed by its polymorphisms

f : Cn
ℓ → K4.

▶ Via topology to f : Cn
ℓ → K4 we associate a map ϕ(f) : Zn

2 → Z2

of the form:

ϕ(f)(x1, . . . , xn) =
n∑

i=1

αixi

with
∑

i αi = 1 mod 2, respecting variable substitutions & permu-
tations.

1
[Barto, Buĺın, Krokhin, Opřsal; ’21]

4

Proof Structure

▶ By a general algebraic theory of PCSPs1, the complexity of
PCSP(Cℓ,K4) is governed by its polymorphisms

f : Cn
ℓ → K4.

▶ Via topology to f : Cn
ℓ → K4 we associate a map ϕ(f) : Zn

2 → Z2

of the form:

ϕ(f)(x1, . . . , xn) =
n∑

i=1

αixi

with
∑

i αi = 1 mod 2, respecting variable substitutions & permu-
tations.
E.g. f : C 2

ℓ → K4 and g : C 4
ℓ → K4 such that:

f (x , y) = g(x , y , y , x)

⇋ ϕ(f)(x , y) = ϕ(g)(x , y , y , x)

1
[Barto, Buĺın, Krokhin, Opřsal; ’21]

4

Proof Structure

▶ By a general algebraic theory of PCSPs1, the complexity of
PCSP(Cℓ,K4) is governed by its polymorphisms

f : Cn
ℓ → K4.

▶ Via topology to f : Cn
ℓ → K4 we associate a map ϕ(f) : Zn

2 → Z2

of the form:

ϕ(f)(x1, . . . , xn) =
n∑

i=1

αixi

with
∑

i αi = 1 mod 2, respecting variable substitutions & permu-
tations.
E.g. f : C 2

ℓ → K4 and g : C 4
ℓ → K4 such that:

f (x , y) = g(x , y , y , x) ⇋ ϕ(f)(x , y) = ϕ(g)(x , y , y , x)

1
[Barto, Buĺın, Krokhin, Opřsal; ’21]

4

Proof Structure

▶ By a general algebraic theory of PCSPs1, the complexity of
PCSP(Cℓ,K4) is governed by its polymorphisms

f : Cn
ℓ → K4.

▶ Via topology to f : Cn
ℓ → K4 we associate a map ϕ(f) : Zn

2 → Z2

of the form:

ϕ(f)(x1, . . . , xn) =
n∑

i=1

αixi

with
∑

i αi = 1 mod 2, respecting variable substitutions & permu-
tations.
▶ Via a combinatorial argument, the number of non-zero αi is
O(ℓ2), independent of n ⇒ hardness follows from general algebraic
theory.

1
[Barto, Buĺın, Krokhin, Opřsal; ’21]

4

Proof Structure

▶ By a general algebraic theory of PCSPs1, the complexity of
PCSP(Cℓ,K4) is governed by its polymorphisms

f : Cn
ℓ → K4.

▶ Via topology to f : Cn
ℓ → K4 we associate a map ϕ(f) : Zn

2 → Z2

of the form:

ϕ(f)(x1, . . . , xn) =
n∑

i=1

αixi

with
∑

i αi = 1 mod 2, respecting variable substitutions & permu-
tations.
▶ Via a combinatorial argument, the number of non-zero αi is
O(ℓ2), independent of n ⇒ hardness follows from general algebraic
theory.

1
[Barto, Buĺın, Krokhin, Opřsal; ’21]

4

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovász; ’78]

Hom(K2,−) is a “recipe“ to combinatorially build a topological
space (simplicial set). The key properties we will use are:

1. For any G , Hom(K2,G) inherits the Z2-symmetry of K2

(Z2-action).

2. For any G → H, there is a corresponding continuous map
Hom(K2,G) → Hom(K2,H) respecting the symmetry.

3. Up to a (symmetry-preserving) topological equivalence,

Hom(K2,G
n) ≃ (Hom(K2,G))n .

4. For G = Cℓ and G = K4, we can explicitly determine
Hom(K2,G).

5

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovász; ’78]

Hom(K2,−) is a “recipe“ to combinatorially build a topological
space (simplicial set).

The key properties we will use are:

1. For any G , Hom(K2,G) inherits the Z2-symmetry of K2

(Z2-action).

2. For any G → H, there is a corresponding continuous map
Hom(K2,G) → Hom(K2,H) respecting the symmetry.

3. Up to a (symmetry-preserving) topological equivalence,

Hom(K2,G
n) ≃ (Hom(K2,G))n .

4. For G = Cℓ and G = K4, we can explicitly determine
Hom(K2,G).

5

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovász; ’78]

Hom(K2,−) is a “recipe“ to combinatorially build a topological
space (simplicial set). The key properties we will use are:

1. For any G , Hom(K2,G) inherits the Z2-symmetry of K2

(Z2-action).

2. For any G → H, there is a corresponding continuous map
Hom(K2,G) → Hom(K2,H) respecting the symmetry.

3. Up to a (symmetry-preserving) topological equivalence,

Hom(K2,G
n) ≃ (Hom(K2,G))n .

4. For G = Cℓ and G = K4, we can explicitly determine
Hom(K2,G).

5

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovász; ’78]

Hom(K2,−) is a “recipe“ to combinatorially build a topological
space (simplicial set). The key properties we will use are:

1. For any G , Hom(K2,G) inherits the Z2-symmetry of K2

(Z2-action).

2. For any G → H, there is a corresponding continuous map
Hom(K2,G) → Hom(K2,H) respecting the symmetry.

3. Up to a (symmetry-preserving) topological equivalence,

Hom(K2,G
n) ≃ (Hom(K2,G))n .

4. For G = Cℓ and G = K4, we can explicitly determine
Hom(K2,G).

5

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovász; ’78]

Hom(K2,−) is a “recipe“ to combinatorially build a topological
space (simplicial set). The key properties we will use are:

1. For any G , Hom(K2,G) inherits the Z2-symmetry of K2

(Z2-action).

2. For any G → H, there is a corresponding continuous map
Hom(K2,G) → Hom(K2,H) respecting the symmetry.

3. Up to a (symmetry-preserving) topological equivalence,

Hom(K2,G
n) ≃ (Hom(K2,G))n .

4. For G = Cℓ and G = K4, we can explicitly determine
Hom(K2,G).

5

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovász; ’78]

Hom(K2,−) is a “recipe“ to combinatorially build a topological
space (simplicial set). The key properties we will use are:

1. For any G , Hom(K2,G) inherits the Z2-symmetry of K2

(Z2-action).

2. For any G → H, there is a corresponding continuous map
Hom(K2,G) → Hom(K2,H) respecting the symmetry.

3. Up to a (symmetry-preserving) topological equivalence,

Hom(K2,G
n) ≃ (Hom(K2,G))n .

4. For G = Cℓ and G = K4, we can explicitly determine
Hom(K2,G).

5

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovász; ’78]

Hom(K2,−) is a “recipe“ to combinatorially build a topological
space (simplicial set). The key properties we will use are:

1. For any G , Hom(K2,G) inherits the Z2-symmetry of K2

(Z2-action).

2. For any G → H, there is a corresponding continuous map
Hom(K2,G) → Hom(K2,H) respecting the symmetry.

3. Up to a (symmetry-preserving) topological equivalence,

Hom(K2,G
n) ≃ (Hom(K2,G))n .

4. For G = Cℓ and G = K4, we can explicitly determine
Hom(K2,G).

5

Hom(K2,Cℓ)

When ℓ ≥ 3 is odd, Γ4ℓ := Hom(K2,Cℓ) is topologically the circle
S1.

Hom(K2,C3)

6

Hom(K2,K4)

Hom(K2,K4) is topologically the sphere S2,

triangulation can be
simplified by t : Hom(K2,K4) → Σ2.

20

12

01|3

13

01

02
03

21

10

23

012|3

20

23|01

12

30

01

02

21

10

3|01

31

32

7

Hom(K2,K4)

Hom(K2,K4) is topologically the sphere S2, triangulation can be
simplified by t : Hom(K2,K4) → Σ2.

20

12

01|3

13

01

02
03

21

10

23

012|3

20

23|01

12

30

01

02

21

10

3|01

31

32

7

Building ϕ - Part I

Start with f : Cn
ℓ → K4.

Hom(K2,−) induces symmetry-preserving
map

f∗ : Γn4ℓ = (Hom(K2,Cℓ))
n︸ ︷︷ ︸

T n=(S1)n

→ Hom(K2,K4) → Σ2︸ ︷︷ ︸
S2

Z2-maps T n → S2 are still too complicated; change S2 to Y a
“nicer” space (Eilenberg-MacLane space)

T n = Γn4ℓ Σ2 Y
f∗

µ(f)

We can classify Z2-maps T n → Y !

8

Building ϕ - Part I

Start with f : Cn
ℓ → K4. Hom(K2,−) induces symmetry-preserving

map

f∗ : Γn4ℓ = (Hom(K2,Cℓ))
n︸ ︷︷ ︸

T n=(S1)n

→ Hom(K2,K4) → Σ2︸ ︷︷ ︸
S2

Z2-maps T n → S2 are still too complicated; change S2 to Y a
“nicer” space (Eilenberg-MacLane space)

T n = Γn4ℓ Σ2 Y
f∗

µ(f)

We can classify Z2-maps T n → Y !

8

Building ϕ - Part I

Start with f : Cn
ℓ → K4. Hom(K2,−) induces symmetry-preserving

map

f∗ : Γn4ℓ = (Hom(K2,Cℓ))
n︸ ︷︷ ︸

T n=(S1)n

→ Hom(K2,K4) → Σ2︸ ︷︷ ︸
S2

Z2-maps T n → S2 are still too complicated; change S2 to Y a
“nicer” space (Eilenberg-MacLane space)

T n = Γn4ℓ Σ2 Y
f∗

µ(f)

We can classify Z2-maps T n → Y !

8

Building ϕ - Part I

Start with f : Cn
ℓ → K4. Hom(K2,−) induces symmetry-preserving

map

f∗ : Γn4ℓ = (Hom(K2,Cℓ))
n︸ ︷︷ ︸

T n=(S1)n

→ Hom(K2,K4) → Σ2︸ ︷︷ ︸
S2

Z2-maps T n → S2 are still too complicated; change S2 to Y a
“nicer” space (Eilenberg-MacLane space)

T n = Γn4ℓ Σ2 Y
f∗

µ(f)

We can classify Z2-maps T n → Y !

8

Monomial maps

Fix S1 = {z ∈ C | |z | = 1} and J ⊆ [n] with |J| odd.

We have a Z2-map mJ : T n = (S1)n → S1 ↪→ S2 ⊆ Y :

mJ(z1, . . . , zn) := Πj∈Jzj

Obs: Monomial maps correspond to linear maps Zn
2 → Z2.

Prop 1: Different monomial maps are not equivalent.
Prop 2: Any Z2-map f : T n → Y is equivalent to a monomial
map.

[n] = {1, . . . , n}.
9

Monomial maps

Fix S1 = {z ∈ C | |z | = 1} and J ⊆ [n] with |J| odd.
We have a Z2-map mJ : T n = (S1)n → S1 ↪→ S2 ⊆ Y :

mJ(z1, . . . , zn) := Πj∈Jzj

Obs: Monomial maps correspond to linear maps Zn
2 → Z2.

Prop 1: Different monomial maps are not equivalent.
Prop 2: Any Z2-map f : T n → Y is equivalent to a monomial
map.

[n] = {1, . . . , n}.
9

Monomial maps

Fix S1 = {z ∈ C | |z | = 1} and J ⊆ [n] with |J| odd.
We have a Z2-map mJ : T n = (S1)n → S1 ↪→ S2 ⊆ Y :

mJ(z1, . . . , zn) := Πj∈Jzj

Obs: Monomial maps correspond to linear maps Zn
2 → Z2.

Prop 1: Different monomial maps are not equivalent.
Prop 2: Any Z2-map f : T n → Y is equivalent to a monomial
map.

[n] = {1, . . . , n}.
9

Monomial maps

Fix S1 = {z ∈ C | |z | = 1} and J ⊆ [n] with |J| odd.
We have a Z2-map mJ : T n = (S1)n → S1 ↪→ S2 ⊆ Y :

mJ(z1, . . . , zn) := Πj∈Jzj

Obs: Monomial maps correspond to linear maps Zn
2 → Z2.

Prop 1: Different monomial maps are not equivalent.

Prop 2: Any Z2-map f : T n → Y is equivalent to a monomial
map.

[n] = {1, . . . , n}.
9

Monomial maps

Fix S1 = {z ∈ C | |z | = 1} and J ⊆ [n] with |J| odd.
We have a Z2-map mJ : T n = (S1)n → S1 ↪→ S2 ⊆ Y :

mJ(z1, . . . , zn) := Πj∈Jzj

Obs: Monomial maps correspond to linear maps Zn
2 → Z2.

Prop 1: Different monomial maps are not equivalent.
Prop 2: Any Z2-map f : T n → Y is equivalent to a monomial
map.

[n] = {1, . . . , n}.
9

Building the minion homomorphism - Part II

How do we associate to f : T n → Y the right monomial map?

10

Building the minion homomorphism - Part II

Use degree in direction i . First, for binary g : T 2 → Y :

deg1(g) = #{[•, •] edges in □}+#{[•, •, •] triangles in ■} (mod 2)

10

Building the minion homomorphism - Part II

Use degree in direction i . First, for binary g : T 2 → Y :

deg1(g) = #{[•, •] edges in □}+#{[•, •, •] triangles in ■} (mod 2)

Ex: deg1(g1) = 1 + 0

10

Building the minion homomorphism - Part II

Use degree in direction i . First, for binary g : T 2 → Y :

deg1(g) = #{[•, •] edges in □}+#{[•, •, •] triangles in ■} (mod 2)

Ex: deg1(g2) = 2 + 3 ≡ 1

10

Building the minion homomorphism - Part II

Use degree in direction i . First, for binary g : T 2 → Y :

deg1(g) = #{[•, •] edges in □}+#{[•, •, •] triangles in ■} (mod 2)

For f : T n → Y , set g(x , y) = f (y , . . . , y , x , y , . . . , y), then:

degi (f) := deg1(g)

10

Building the minion homomorphism - Part II

Use degree in direction i . First, for binary g : T 2 → Y :

deg1(g) = #{[•, •] edges in □}+#{[•, •, •] triangles in ■} (mod 2)

For f : T n → Y , set g(x , y) = f (y , . . . , y , x , y , . . . , y), then:

degi (f) := deg1(g)
Ex: deg1(f)

10

Building the minion homomorphism - Part II

Use degree in direction i . First, for binary g : T 2 → Y :

deg1(g) = #{[•, •] edges in □}+#{[•, •, •] triangles in ■} (mod 2)

For f : T n → Y , set g(x , y) = f (y , . . . , y , x , y , . . . , y), then:

degi (f) := deg1(g)
Ex: deg2(f)

10

Building the minion homomorphism - Part II

Use degree in direction i . First, for binary g : T 2 → Y :

deg1(g) = #{[•, •] edges in □}+#{[•, •, •] triangles in ■} (mod 2)

For f : T n → Y , set g(x , y) = f (y , . . . , y , x , y , . . . , y), then:

degi (f) := deg1(g)
Ex: deg3(f)

10

Building the minion homomorphism - Part II

Use degree in direction i . First, for binary g : T 2 → Y :

deg1(g) = #{[•, •] edges in □}+#{[•, •, •] triangles in ■} (mod 2)

Finally, define ϕ : f 7→ (deg1(f), . . . , degn(f)).

10

What’s next?

• What can we say PCSP(G ,K5)? It requires new topological
ideas.

• Can topology work with non-symmetric templates (e.g.
digraphs)?

• Which templates can be studied topologically?

• More category theory (e.g. generalized nerve functors instead
of Hom)?

11

What’s next?

• What can we say PCSP(G ,K5)? It requires new topological
ideas.

• Can topology work with non-symmetric templates (e.g.
digraphs)?

• Which templates can be studied topologically?

• More category theory (e.g. generalized nerve functors instead
of Hom)?

11

What’s next?

• What can we say PCSP(G ,K5)? It requires new topological
ideas.

• Can topology work with non-symmetric templates (e.g.
digraphs)?

• Which templates can be studied topologically?

• More category theory (e.g. generalized nerve functors instead
of Hom)?

11

What’s next?

• What can we say PCSP(G ,K5)? It requires new topological
ideas.

• Can topology work with non-symmetric templates (e.g.
digraphs)?

• Which templates can be studied topologically?

• More category theory (e.g. generalized nerve functors instead
of Hom)?

11

Thank you!

Combinatorial Constraints

Obs 1: Simplicial maps X → Σ2 ⇋ 2-colourings of the vertices
such that every simplex has at most two alternations.

Obs 2: Any simplicial map f : Γ2L → Σ2 with deg1(f) = 1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

By slicing, we get that at least
a 1/CL2 fraction of horizontal
edges is color swapping.

12

Combinatorial Constraints

Obs 1: Simplicial maps X → Σ2 ⇋ 2-colourings of the vertices
such that every simplex has at most two alternations.
Obs 2: Any simplicial map f : Γ2L → Σ2 with deg1(f) = 1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

By slicing, we get that at least
a 1/CL2 fraction of horizontal
edges is color swapping.

12

Combinatorial Constraints

Obs 1: Simplicial maps X → Σ2 ⇋ 2-colourings of the vertices
such that every simplex has at most two alternations.
Obs 2: Any simplicial map f : Γ2L → Σ2 with deg1(f) = 1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

By slicing, we get that at least
a 1/CL2 fraction of horizontal
edges is color swapping.

12

Combinatorial Constraints

Obs 1: Simplicial maps X → Σ2 ⇋ 2-colourings of the vertices
such that every simplex has at most two alternations.
Obs 2: Any simplicial map f : Γ2L → Σ2 with deg1(f) = 1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

By slicing, we get that at least
a 1/CL2 fraction of horizontal
edges is color swapping.

12

Combinatorial Constraints

Obs 1: Simplicial maps X → Σ2 ⇋ 2-colourings of the vertices
such that every simplex has at most two alternations.
Obs 2: Any simplicial map f : Γ2L → Σ2 with deg1(f) = 1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

By slicing, we get that at least
a 1/CL2 fraction of horizontal
edges is color swapping.

12

Combinatorial Constraints

Obs 1: Simplicial maps X → Σ2 ⇋ 2-colourings of the vertices
such that every simplex has at most two alternations.
Obs 2: Any simplicial map f : Γ2L → Σ2 with deg1(f) = 1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

By slicing, we get that at least
a 1/CL2 fraction of horizontal
edges is color swapping.

12

Bounding Essential Arity

Goal: Show that any simplicial map f : ΓnL → Σ2 can have at most
O(L2) essential coordinates (i.e. degi (f) ̸= 0).

Proof: We can assume (up to taking a suitable minor) that every
coordinate of f is essential. Choose a non degenerate n-simplex
σ = [u0, . . . , un] uniformly at random. Let Xi (σ) the random
variable that is 1 if [ui , ui+1] is colour swapping, 0 otherwise.

E

[∑
i

Xi (σ)

]
=

∑
i

E [Xi (σ)] ≥ n
1

CL2
.

However,
∑

i Xi (σ) is the total number of colour swaps in σ, thus∑
i Xi (σ) ≤ 2 since f is simplicial.

Therefore,
n ≤ 2CL2

that is, any function in the image of ϕ has essential arity at most
O(L2) ⇒ Imϕ has bounded essential arity.

13

Bounding Essential Arity

Goal: Show that any simplicial map f : ΓnL → Σ2 can have at most
O(L2) essential coordinates (i.e. degi (f) ̸= 0).
Proof: We can assume (up to taking a suitable minor) that every
coordinate of f is essential. Choose a non degenerate n-simplex
σ = [u0, . . . , un] uniformly at random. Let Xi (σ) the random
variable that is 1 if [ui , ui+1] is colour swapping, 0 otherwise.

E

[∑
i

Xi (σ)

]
=

∑
i

E [Xi (σ)] ≥ n
1

CL2
.

However,
∑

i Xi (σ) is the total number of colour swaps in σ, thus∑
i Xi (σ) ≤ 2 since f is simplicial.

Therefore,
n ≤ 2CL2

that is, any function in the image of ϕ has essential arity at most
O(L2) ⇒ Imϕ has bounded essential arity.

13

Bounding Essential Arity

Goal: Show that any simplicial map f : ΓnL → Σ2 can have at most
O(L2) essential coordinates (i.e. degi (f) ̸= 0).
Proof: We can assume (up to taking a suitable minor) that every
coordinate of f is essential. Choose a non degenerate n-simplex
σ = [u0, . . . , un] uniformly at random. Let Xi (σ) the random
variable that is 1 if [ui , ui+1] is colour swapping, 0 otherwise.

E

[∑
i

Xi (σ)

]
=

∑
i

E [Xi (σ)] ≥ n
1

CL2
.

However,
∑

i Xi (σ) is the total number of colour swaps in σ, thus∑
i Xi (σ) ≤ 2 since f is simplicial.

Therefore,
n ≤ 2CL2

that is, any function in the image of ϕ has essential arity at most
O(L2) ⇒ Imϕ has bounded essential arity.

13

Bounding Essential Arity

Goal: Show that any simplicial map f : ΓnL → Σ2 can have at most
O(L2) essential coordinates (i.e. degi (f) ̸= 0).
Proof: We can assume (up to taking a suitable minor) that every
coordinate of f is essential. Choose a non degenerate n-simplex
σ = [u0, . . . , un] uniformly at random. Let Xi (σ) the random
variable that is 1 if [ui , ui+1] is colour swapping, 0 otherwise.

E

[∑
i

Xi (σ)

]
=

∑
i

E [Xi (σ)] ≥ n
1

CL2
.

However,
∑

i Xi (σ) is the total number of colour swaps in σ, thus∑
i Xi (σ) ≤ 2 since f is simplicial.

Therefore,
n ≤ 2CL2

that is, any function in the image of ϕ has essential arity at most
O(L2) ⇒ Imϕ has bounded essential arity.

13

Bounding Essential Arity

Goal: Show that any simplicial map f : ΓnL → Σ2 can have at most
O(L2) essential coordinates (i.e. degi (f) ̸= 0).
Proof: We can assume (up to taking a suitable minor) that every
coordinate of f is essential. Choose a non degenerate n-simplex
σ = [u0, . . . , un] uniformly at random. Let Xi (σ) the random
variable that is 1 if [ui , ui+1] is colour swapping, 0 otherwise.

E

[∑
i

Xi (σ)

]
=

∑
i

E [Xi (σ)] ≥ n
1

CL2
.

However,
∑

i Xi (σ) is the total number of colour swaps in σ, thus∑
i Xi (σ) ≤ 2 since f is simplicial.

Therefore,
n ≤ 2CL2

that is, any function in the image of ϕ has essential arity at most
O(L2) ⇒ Imϕ has bounded essential arity.

13

	Appendix

