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Hom(K>, Cr)

When ¢ > 3 is odd, 4y := Hom(K>, Cy) is topologically the circle
st

Hom(K>, G3)
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Hom(Ks, Ka)

Hom(K2, Ky) is topologically the sphere S?, triangulation can be
simplified by t : Hom(Kz, K3) — £2.




Building ¢ - Part |

Start with f : C] — Kj.



Building ¢ - Part |

Start with f : C — Ks. Hom(K>, —) induces symmetry-preserving
map

f. : T4, = (Hom(Ka, ;)" — Hom(Kz, Ky) — X2

Tn:(sl)n S2




Building ¢ - Part |

Start with f : C — Ks. Hom(K>, —) induces symmetry-preserving
map

f. : T4, = (Hom(Ka, ;)" — Hom(Kz, Ky) — X2

Tn:(sl)n Y

Zo-maps T" — S are still too complicated; change S% to Y a
“nicer” space (Eilenberg-MacLane space)

f* z 2 Y

—uh

T" =14,



Building ¢ - Part |

Start with f : C — Ks. Hom(K>, —) induces symmetry-preserving
map

f. : T4, = (Hom(Ka, ;)" — Hom(Kz, Ky) — X2

Tn:(sl)n Y

Zo-maps T" — S are still too complicated; change S% to Y a
“nicer” space (Eilenberg-MacLane space)

f* z 2 Y

—uh

We can classify Zy-maps T" — Y|

T" =14,
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Fix S ={z€ C||z| =1} and J C [n] with |J| odd.
We have a Zp-map my : T" = (§1)" — St — S2 C v

my(z1,...,27) = MNjcyz;
Obs: Monomial maps correspond to linear maps Z5 — Zo.
Prop 1: Different monomial maps are not equivalent.

Prop 2: Any Zy-map f : T" — Y is equivalent to a monomial
map.
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Building the minion homomorphism - Part Il

How do we associate to f : T" — Y the right monomial map?

:
SN j*m/w/w
NN AN NS
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Building the minion homomorphism - Part Il

Use degree in direction i. First, for binary g : T? — Y:
deg;(g) = #{[e, ] edges in O} +#{[e, ¢, o] triangles in W}

Ex: degi(g2) =2+3=1
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Building the minion homomorphism - Part Il

Use degree in direction i. First, for binary g : T? — Y:
deg;(g) = #{[e, ¢] edges in (I} +#{]e, =, o] triangles in M} (mod 2)
Finally, define ¢ : f — (degy(f),...,deg,(f)).

10



What'’s next?

e What can we say PCSP(G, K5)? It requires new topological
ideas.

11



What'’s next?

e What can we say PCSP(G, K5)? It requires new topological
ideas.

e Can topology work with non-symmetric templates (e.g.
digraphs)?

11



What'’s next?

e What can we say PCSP(G, K5)? It requires new topological
ideas.

e Can topology work with non-symmetric templates (e.g.
digraphs)?

e Which templates can be studied topologically?

11



What'’s next?

e What can we say PCSP(G, K5)? It requires new topological
ideas.

e Can topology work with non-symmetric templates (e.g.
digraphs)?
e Which templates can be studied topologically?

e More category theory (e.g. generalized nerve functors instead
of Hom)?

11



Thank youl!
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Proof: We can assume (up to taking a suitable minor) that every
coordinate of f is essential. Choose a non degenerate n-simplex

o = [uo, ..., us] uniformly at random. Let Xj(o) the random
variable that is 1 if [u;, uj41] is colour swapping, 0 otherwise.

E Zx,-

However, 3. Xj(o) is the total number of colour swaps in o, thus
> Xi(o) < 2 since f is simplicial.
Therefore,

ZE[X ]>nCL2

n<2CL?

that is, any function in the image of ¢ has essential arity at most
O(L?) = Im¢ has bounded essential arity.
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