Hardness of 4-colouring G-colourable graphs

Gianluca Tasinato*

Joint work with:
S. Awakumov!, M. Filakovsky?, J. Oprsal8, U. Wagner*

TTel Aviv University; ¥Masaryk University; $University of Birmingham; *ISTA

Approximate graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard
problem [Karp; '72]

Graph = undirected simple finite graph on n vertices. 1

Approximate graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard
problem. [Karp; '72]
Approximate Graph Colouring problem [Search]: Fix k > 4.
Given a 3-colourable graph G, find a k-colouring.

Graph = undirected simple finite graph on n vertices. 1

Approximate graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard

problem. [Karp; '72]
Approximate Graph Colouring problem [Decision]: Fix k > 4.
Given a graph G, decide if G is 3-colourable or not even k-colourable.

Graph = undirected simple finite graph on n vertices. 1

Approximate graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard

problem. [Karp; '72]
Approximate Graph Colouring problem [Decision]: Fix k > 4.
Given a graph G, decide if G is 3-colourable or not even k-colourable.

k ‘ Complexity
4 ‘ NP_hard [Khanna, Linial, Safra; '00]

Graph = undirected simple finite graph on n vertices. 1

Approximate graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard

problem. [Karp; '72]
Approximate Graph Colouring problem [Decision]: Fix k > 4.
Given a graph G, decide if G is 3-colourable or not even k-colourable.

k ‘ Complexity
4 NP_hard [Khanna, Linial, Safra; '00]
5 NP-hard [Bulin, Krokhin, Opr3al; '19]

Graph = undirected simple finite graph on n vertices. 1

Approximate graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard

problem. [Karp; '72]
Approximate Graph Colouring problem [Decision]: Fix k > 4.
Given a graph G, decide if G is 3-colourable or not even k-colourable.

k Complexity

4 NP-hard [Khanna, Linial, Safra; "00]
5 NP-hard [Bulin, Krokhin, Oprzal; '19]
6 777 NP-hard modulo UGC

[Dinur, Mossel, Regev; '09]

[Guruswami, Sandeep; '20]

[Breverman, Khot, Lifshitz, Mulzer; '21]

Graph = undirected simple finite graph on n vertices. 1

Approximate graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard

problem. [Karp; '72]
Approximate Graph Colouring problem [Decision]: Fix k > 4.
Given a graph G, decide if G is 3-colourable or not even k-colourable.

k Complexity
4 NP-hard [Khanna, Linial, Safra; "00]
5 NP-hard [Bulin, Krokhin, Oprzal; '19]
6 777 NP-hard modulo UGC
[Dinur, Mossel, Regev; '09]
[Guruswami, Sandeep; '20]
[Breverman, Khot, Lifshitz, Mulzer; '21]
kR P [Kawarabayashi, Thorup; '17]

Graph = undirected simple finite graph on n vertices. 1

Graph homomorphisms

Definition (Graph Homomorphism)

Given G = (Vg; Eg) and H = (Vy; Ey) graphs, a graph
homomorphism is a map f : Vg — Vy that respects edges, i.e.
for all (u,v) € Eg, (f(u),f(v)) € Ey.

Graph homomorphisms

Definition (Graph Homomorphism)

Given G = (Vg; Eg) and H = (Vy; Ey) graphs, a graph
homomorphism is a map f : Vg — Vy that respects edges, i.e.
for all (u,v) € Eg, (f(u),f(v)) € Ey.

Example: k-colouring of G is graph homomorphism G — K.

K = complete graph on k vertices. 5

Graph homomorphisms

Definition (Graph Homomorphism)

Given G = (Vg; Eg) and H = (Vy; Ey) graphs, a graph
homomorphism is a map f : Vg — Vy that respects edges, i.e.
for all (u,v) € Eg, (f(u),f(v)) € Ey.

Example: k-colouring of G is graph homomorphism G — K.

2y

B

K = complete graph on k vertices. 5

Promise Graph Homomorphism

Let G, H graphs such that G — H. The (decision) Promise Graph
Homomorphism Problem PCSP (G, H) is the following problem:

Input: a graph / Output: Yes if | - G; No if | » H

Promise Graph Homomorphism

Let G, H graphs such that G — H. The (decision) Promise Graph
Homomorphism Problem PCSP (G, H) is the following problem:
Input: a graph / Output: Yes if | - G; No if | » H
Conj: If G and H are non bipartite graphs with G — H, then
PCSP(G, H) is NP-hard. [Brakensiek, Guruswami; ‘18]

Promise Graph Homomorphism

Let G, H graphs such that G — H. The (decision) Promise Graph
Homomorphism Problem PCSP (G, H) is the following problem:

Input: a graph / Output: Yes if | - G; No if | » H
Conj: If G and H are non bipartite graphs with G — H, then
PCSP(G, H) iS NP-hard. [Brakensiek, Guruswami; '18]

Rmk: It is enough to show it for G = C; (¢ odd) and H = Kj.

Promise Graph Homomorphism

Let G, H graphs such that G — H. The (decision) Promise Graph
Homomorphism Problem PCSP (G, H) is the following problem:

Input: a graph / Output: Yes if | - G; No if | » H
Conj: If G and H are non bipartite graphs with G — H, then
PCSP(G, H) iS NP—hard. [Brakensiek, Guruswami; 18]

Rmk: It is enough to show it for G = C; (¢ odd) and H = Kj.

Theorem (Krokhin, Opr3al, Wrochna, Zivny; '23)

For any 3-colourable non bipartite graph G, PCSP(G, K3) is
NP-hard.

Promise Graph Homomorphism

Let G, H graphs such that G — H. The (decision) Promise Graph
Homomorphism Problem PCSP (G, H) is the following problem:

Input: a graph / Output: Yes if | - G; No if | » H
Conj: If G and H are non bipartite graphs with G — H, then
PCSP(G, H) iS NP—hard. [Brakensiek, Guruswami; 18]

Rmk: It is enough to show it for G = C; (¢ odd) and H = Kj.

Theorem (Krokhin, Opr3al, Wrochna, Zivny; '23)

For any 3-colourable non bipartite graph G, PCSP(G, K3) is
NP-hard.

Theorem (Avvakumov, Filakovsky, Opr3al, T., Wagner; '25+)

For any 4-colourable non bipartite graph G, PCSP(G, Ky) is
NP-hard.

Proof Structure

» By a general algebraic theory of PCSPs?, the complexity of
PCSP(Cy, Ky) is governed by its polymorphisms

f: C[n—> K4

1[Barto, Bulin, Krokhin, Opr3al; '21]

Proof Structure

» By a general algebraic theory of PCSPs?, the complexity of
PCSP(Cy, Ky) is governed by its polymorphisms

f . Cé‘l — K4
C/ is categorical/tensor product: vertices of C; are n-tuples of
vertices, edge between two tuples when each coordinate form an
edge.

1[Barto, Bulin, Krokhin, Opr3al; '21]

Proof Structure

» By a general algebraic theory of PCSPs?, the complexity of
PCSP(Cy, Ky) is governed by its polymorphisms

f . Cé‘l — K4
» Via topology to f: C] — Ky we associate a map ¢(f) : Z5 — Zo
of the form:

¢>(f)(X1, cee ,Xn) = ZO(,‘X,‘
i=1

with > - a; =1 mod 2, respecting variable substitutions & permu-
tations.

1[Barto, Bulin, Krokhin, Opr3al; '21]

Proof Structure

» By a general algebraic theory of PCSPs?, the complexity of
PCSP(Cy, Ky) is governed by its polymorphisms

f . Cé‘l — K4
» Via topology to f: C] — Ky we associate a map ¢(f) : Z5 — Zo
of the form:

¢>(f)(X1, cee ,Xn) = ZO(,‘X,‘
i=1

with > - a; =1 mod 2, respecting variable substitutions & permu-

tations.
Eg f: Cf — Ky and g: Cf — Ky such that:

f(x,y) =g(x,y,y,x)

1[Barto, Bulin, Krokhin, Opr3al; '21]

Proof Structure

» By a general algebraic theory of PCSPs?, the complexity of
PCSP(Cy, Ky) is governed by its polymorphisms

f . Cé‘l — K4
» Via topology to f: C] — Ky we associate a map ¢(f) : Z5 — Zo
of the form:

¢>(f)(X1, cee ,Xn) = ZO(,‘X,‘
i=1

with > - a; =1 mod 2, respecting variable substitutions & permu-

tations.
Eg f: Cf — Ky and g: Cf — Ky such that:

f(XaY) :g(Xaya)/aX) :¢(f)(xvy) :¢(g)(XaYaYaX)

1[Barto, Bulin, Krokhin, Opr3al; '21]

Proof Structure

» By a general algebraic theory of PCSPs?, the complexity of
PCSP(Cy, Ky) is governed by its polymorphisms

f . Cé‘l —> K4
» Via topology to f: C] — Ky we associate a map ¢(f) : Z5 — Zo
of the form:

¢>(f)(X1, cee ,Xn) = ZO(,‘X,‘
i=1

with > - a; =1 mod 2, respecting variable substitutions & permu-

tations.
» Via a combinatorial argument, the number of non-zero «; is

O(¢?), independent of n = hardness follows from general algebraic
theory.

1[Barto, Bulin, Krokhin, Opr3al; '21]

Proof Structure

» By a general algebraic theory of PCSPs?, the complexity of
PCSP(Cy, Ky) is governed by its polymorphisms

f . C[n — K4
» Via topology to f: C] — Kj we associate a map ¢(f) : Z5 — Zo
of the form:

(Z)(f)(Xl, e ,Xn) = ZO(,‘X,'
i=1

with > . a; =1 mod 2, respecting variable substitutions & permu-

tations.
» Via a combinatorial argument, the number of non-zero «; is

O(¢?), independent of n = hardness follows from general algebraic
theory.

1[Barto, Bulin, Krokhin, Opr3al; '21]

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovész; 78]

Hom Complex

Hom-complex is a well-studied construction in topological

combinatorics. [Lovész; 78]
Hom(K3,—) is a “recipe” to combinatorially build a topological

space (simplicial set).

Hom Complex

Hom-complex is a well-studied construction in topological

combinatorics. [Lovész; 78]
Hom(K3,—) is a “recipe” to combinatorially build a topological

space (simplicial set). The key properties we will use are:

Hom Complex

Hom-complex is a well-studied construction in topological

combinatorics. [Lovész; 78]
Hom(K3,—) is a “recipe” to combinatorially build a topological

space (simplicial set). The key properties we will use are:
1. For any G, Hom(K>, G) inherits the Z,-symmetry of K>
(Zp-action).

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovész; 78]
Hom(K3,—) is a “recipe” to combinatorially build a topological
space (simplicial set). The key properties we will use are:
1. For any G, Hom(K>, G) inherits the Z,-symmetry of K>
(Zp-action).
2. For any G — H, there is a corresponding continuous map
Hom(K>, G) — Hom(K>, H) respecting the symmetry.

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovész; 78]
Hom(K3,—) is a “recipe” to combinatorially build a topological
space (simplicial set). The key properties we will use are:
1. For any G, Hom(K>, G) inherits the Z,-symmetry of K>
(Zp-action).
2. For any G — H, there is a corresponding continuous map
Hom(K>, G) — Hom(K>, H) respecting the symmetry.

3. Up to a (symmetry-preserving) topological equivalence,

Hom(Kz, G") ~ (Hom(K>, G))".

Hom Complex

Hom-complex is a well-studied construction in topological
combinatorics. [Lovész; 78]
Hom(K3,—) is a “recipe” to combinatorially build a topological
space (simplicial set). The key properties we will use are:
1. For any G, Hom(K>, G) inherits the Z,-symmetry of K>
(Zp-action).
2. For any G — H, there is a corresponding continuous map
Hom(K>, G) — Hom(K>, H) respecting the symmetry.

3. Up to a (symmetry-preserving) topological equivalence,
Hom(Kz, G") ~ (Hom(K>, G))".

4. For G = Cy and G = K4, we can explicitly determine
Hom(K3, G).

Hom(K>, Cr)

When ¢ > 3 is odd, 4y := Hom(K>, Cy) is topologically the circle
st

Hom(K>, G3)

Hom(K>, K;)

Hom(K2, Ks) is topologically the sphere S2,

Hom(Ks, Ka)

Hom(K2, Ky) is topologically the sphere S?, triangulation can be
simplified by t : Hom(Kz, K3) — £2.

Building ¢ - Part |

Start with f : C] — Kj.

Building ¢ - Part |

Start with f : C — Ks. Hom(K>, —) induces symmetry-preserving
map

f. : T4, = (Hom(Ka, ;)" — Hom(Kz, Ky) — X2

Tn:(sl)n S2

Building ¢ - Part |

Start with f : C — Ks. Hom(K>, —) induces symmetry-preserving
map

f. : T4, = (Hom(Ka, ;)" — Hom(Kz, Ky) — X2

Tn:(sl)n Y

Zo-maps T" — S are still too complicated; change S% to Y a
“nicer” space (Eilenberg-MacLane space)

f* z 2 Y

—uh

T" =14,

Building ¢ - Part |

Start with f : C — Ks. Hom(K>, —) induces symmetry-preserving
map

f. : T4, = (Hom(Ka, ;)" — Hom(Kz, Ky) — X2

Tn:(sl)n Y

Zo-maps T" — S are still too complicated; change S% to Y a
“nicer” space (Eilenberg-MacLane space)

f* z 2 Y

—uh

We can classify Zy-maps T" — Y|

T" =14,

Monomial maps

Fix S ={z€ C||z| =1} and J C [n] with |J| odd.

[n] =A1,...,n}. 3

Monomial maps

Fix S ={z€ C||z| =1} and J C [n] with |J| odd.
We have a Zp-map my : T" = (§1)" — St — S2 C v

my(z1, ..., 2zn) = Njcyz

[n] =A1,...,n}. g

Monomial maps

Fix S ={z€ C||z| =1} and J C [n] with |J| odd.
We have a Zp-map my : T" = (§1)" — St — S2 C v

my(z1, ..., 2zn) = Njcyz

Obs: Monomial maps correspond to linear maps Z5 — Zo.

[n] =A1,...,n}. g

Monomial maps

Fix S ={z€ C||z| =1} and J C [n] with |J| odd.
We have a Zp-map my : T" = (§1)" — St — S2 C v

my(z1, ..., 2zn) = Njcyz

Obs: Monomial maps correspond to linear maps Z5 — Zo.
Prop 1: Different monomial maps are not equivalent.

[n] =A1,...,n}. g

Monomial maps

Fix S ={z€ C||z| =1} and J C [n] with |J| odd.
We have a Zp-map my : T" = (§1)" — St — S2 C v

my(z1,...,27) = MNjcyz;
Obs: Monomial maps correspond to linear maps Z5 — Zo.
Prop 1: Different monomial maps are not equivalent.

Prop 2: Any Zy-map f : T" — Y is equivalent to a monomial
map.

[n] =A1,...,n}. 3

Building the minion homomorphism - Part Il

How do we associate to f : T" — Y the right monomial map?

:
SN j*m/w/w
NN AN NS
VAN

10

Building the minion homomorphism - Part Il

Use degree in direction i. First, for binary g : T? — Y:
deg;(g) = #{[e, | edges in O} +#{[e, ¢,] triangles in M} (mod 2)

(00— «— > <« 00

10

Building the minion homomorphism - Part Il

Use degree in direction i. First, for binary g : T? — Y:
deg;(g) = #{[e, | edges in O} +#{[e, ¢,] triangles in M} (mod 2)
Ex: deg;(g1) =140

J(
e <o— <« — < e <0

10

Building the minion homomorphism - Part Il

Use degree in direction i. First, for binary g : T? — Y:
deg;(g) = #{[e,] edges in O} +#{[e, ¢, o] triangles in W}

Ex: degi(g2) =2+3=1

'

<o

2N
DRI

——)

1

—

TP

4

%

+i+

BN

10

Building the minion homomorphism - Part Il

Use degree in direction i. First, for binary g : T? — Y:
deg;(g) = #{[e, | edges in O} +#{[e, ¢,] triangles in M} (mod 2)
For f: T" = Y, set g(x,y)=f(y,...,¥,%,¥,...,y), then:

deg;(f) := deg;(g)

10

Building the minion homomorphism - Part Il

Use degree in direction i. First, for binary g : T2 — Y
degi(g) = #{[e, »| edges in O}+#{[e, », o] triangles in M} (mod 2)
Forf: T"—Y, set g(x,y)="f(y,...,y,X,¥,...,y), then:

Ex: deg, (f) deg;(f) = deg,(g)

10

Building the minion homomorphism - Part Il

Use degree in direction i. First, for binary g : T2 — Y
deg;(g) = #{[e,] edges in (I} +#{[e, =, o] triangles in M} (mod 2)
Forf: T"—Y, set g(x,y)="f(y,...,y,X,¥,...,y), then:

Ex: deg, (f) deg;(f) = deg,(g)

10

Building the minion homomorphism - Part Il

Use degree in direction i. First, for binary g : T2 — Y
degi(g) = #{[e, »| edges in O}+#{[e, », o] triangles in M} (mod 2)
Forf: T"—Y, set g(x,y)="f(y,...,y,X,¥,...,y), then:

Ex: degs(f) deg;(f) = deg,(g)

10

Building the minion homomorphism - Part Il

Use degree in direction i. First, for binary g : T? — Y:
deg;(g) = #{[e, ¢] edges in (I} +#{]e, =, o] triangles in M} (mod 2)
Finally, define ¢ : f — (degy(f),...,deg,(f)).

10

What'’s next?

e What can we say PCSP(G, K5)? It requires new topological
ideas.

11

What'’s next?

e What can we say PCSP(G, K5)? It requires new topological
ideas.

e Can topology work with non-symmetric templates (e.g.
digraphs)?

11

What'’s next?

e What can we say PCSP(G, K5)? It requires new topological
ideas.

e Can topology work with non-symmetric templates (e.g.
digraphs)?

e Which templates can be studied topologically?

11

What'’s next?

e What can we say PCSP(G, K5)? It requires new topological
ideas.

e Can topology work with non-symmetric templates (e.g.
digraphs)?
e Which templates can be studied topologically?

e More category theory (e.g. generalized nerve functors instead
of Hom)?

11

Thank youl!

Combinatorial Constraints

Obs 1: Simplicial maps X — ¥? = 2-colourings of the vertices
such that every simplex has at most two alternations.

12

Combinatorial Constraints

Obs 1: Simplicial maps X — ¥? = 2-colourings of the vertices
such that every simplex has at most two alternations.

Obs 2: Any simplicial map f : 7 — %2 with deg;(f) = 1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

12

Combinatorial Constraints

Obs 1: Simplicial maps X — Y2 = 2-colourings of the vertices
such that every simplex has at most two alternations.

Obs 2: Any simplicial map f : 7 — ¥2 with deg;(f) =1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

By slicing, we get that at least
a 1/CL? fraction of horizontal
edges is color swapping.

12

Combinatorial Constraints

Obs 1: Simplicial maps X — Y2 = 2-colourings of the vertices
such that every simplex has at most two alternations.

Obs 2: Any simplicial map f : 7 — ¥2 with deg;(f) =1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

By slicing, we get that at least
a 1/CL? fraction of horizontal
edges is color swapping.

12

Combinatorial Constraints

Obs 1: Simplicial maps X — Y2 = 2-colourings of the vertices
such that every simplex has at most two alternations.

Obs 2: Any simplicial map f : 7 — ¥2 with deg;(f) =1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

By slicing, we get that at least
a 1/CL? fraction of horizontal
edges is color swapping.

12

Combinatorial Constraints

Obs 1: Simplicial maps X — Y2 = 2-colourings of the vertices
such that every simplex has at most two alternations.

Obs 2: Any simplicial map f : 7 — ¥2 with deg;(f) =1 has to
have at least one horizontal color swapping edges; i.e. at least one
horizontal edge in the torus is not monochrome.

By slicing, we get that at least
a 1/CL? fraction of horizontal
edges is color swapping.

12

Bounding Essential Arity

Goal: Show that any simplicial map f : '] — Y2 can have at most
O(L?) essential coordinates (i.e. deg;(f) # 0).

13

Bounding Essential Arity

Goal: Show that any simplicial map f : '] — Y2 can have at most
O(L?) essential coordinates (i.e. deg;(f) # 0).

Proof: We can assume (up to taking a suitable minor) that every
coordinate of f is essential. Choose a non degenerate n-simplex

o = [uo, ..., us] uniformly at random. Let Xj(o) the random
variable that is 1 if [u;, uj41] is colour swapping, 0 otherwise.

13

Bounding Essential Arity

Goal: Show that any simplicial map f : '] — Y2 can have at most
O(L?) essential coordinates (i.e. deg;(f) # 0).

Proof: We can assume (up to taking a suitable minor) that every
coordinate of f is essential. Choose a non degenerate n-simplex

o = [uo, ..., us] uniformly at random. Let Xj(o) the random
variable that is 1 if [u;, uj41] is colour swapping, 0 otherwise.

E Zx,-

ZE[X]>nCL2

13

Bounding Essential Arity

Goal: Show that any simplicial map f : '] — Y2 can have at most
O(L?) essential coordinates (i.e. deg;(f) # 0).

Proof: We can assume (up to taking a suitable minor) that every
coordinate of f is essential. Choose a non degenerate n-simplex

o = [uo, ..., us] uniformly at random. Let Xj(o) the random
variable that is 1 if [u;, uj41] is colour swapping, 0 otherwise.

E Zx,-

However, 3. Xj(o) is the total number of colour swaps in o, thus
> Xi(o) < 2 since f is simplicial.

ZE[X]>nCL2

13

Bounding Essential Arity

Goal: Show that any simplicial map f : '] — Y2 can have at most
O(L?) essential coordinates (i.e. deg;(f) # 0).

Proof: We can assume (up to taking a suitable minor) that every
coordinate of f is essential. Choose a non degenerate n-simplex

o = [uo, ..., us] uniformly at random. Let Xj(o) the random
variable that is 1 if [u;, uj41] is colour swapping, 0 otherwise.

E Zx,-

However, 3. Xj(o) is the total number of colour swaps in o, thus
> Xi(o) < 2 since f is simplicial.
Therefore,

ZE[X]>nCL2

n<2CL?

that is, any function in the image of ¢ has essential arity at most
O(L?) = Im¢ has bounded essential arity.

13

	Appendix

