NP-hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs

Gianluca Tasinato

ISTA

Joint work with: M. Filakovský, T.-V. Nakajima, J. Opršal, U. Wagner

Graph = undirected simple finite graph without loops on*n*vertices.

1

Promise Graph Colouring problem (informal): Given a 3-colourable graph G, find a k-colouring $(k \ge 4)$.

Promise Graph Colouring problem [Decision version]: Fix $k \ge 4$. Given a graph *G*, decide if *G* is 3-colourable or not even *k*-colourable.

Promise Graph Colouring problem [Decision version]: Fix $k \ge 4$. Given a graph *G*, decide if *G* is 3-colourable or not even k-colourable.

k	Complexity	
4	NP-hard	[Khanna, Linial, Safra; '00]

Graph = undirected simple finite graph without loops on*n*vertices.

1

Promise Graph Colouring problem [Decision version]: Fix $k \ge 4$. Given a graph *G*, decide if *G* is 3-colourable or not even k-colourable.

k	Complexity	
4	NP-hard	[Khanna, Linial, Safra; '00]
5	NP-hard	[Bulín, Krokhin, Opršal; '19]

Graph = undirected simple finite graph without loops on*n*vertices.

1

Promise Graph Colouring problem [Decision version]: Fix $k \ge 4$. Given a graph *G*, decide if *G* is 3-colourable or not even k-colourable.

k	Complexity	
4	NP-hard	[Khanna, Linial, Safra; '00]
5	NP-hard	[Bulín, Krokhin, Opršal; '19]
6	???	NP-hard modulo unique games conjecture
		[Dinur, Mossel, Regev; '09]
÷	:	[Guruswami, Sandeep; '20]
		[Breverman, Khot, Lifshitz, Mulzer; '21]

Graph = undirected simple finite graph without loops on*n*vertices.

Promise Graph Colouring problem [Decision version]: Fix $k \ge 4$. Given a graph *G*, decide if *G* is 3-colourable or not even k-colourable.

k	Complexity	
4	NP-hard	[Khanna, Linial, Safra; '00]
5	NP-hard	[Bulín, Krokhin, Opršal; '19]
6	???	NP-hard modulo unique games conjecture
		[Dinur, Mossel, Regev; '09]
		[Guruswami, Sandeep; '20]
		[Breverman, Khot, Lifshitz, Mulzer; '21]
n ^{0.19996}	Р	[Kawarabayashi, Thorup; '17]

Graph = undirected simple finite graph without loops on*n*vertices.

1

Definition (Graph Homomorphism) Given $G = (V_G; E_G)$ and $H = (V_H; E_H)$ graphs, a graph homomorphism is a map $f : V_G \to V_H$ that respects edges, i.e. for all $(u, v) \in E_G$, $(f(u), f(v)) \in E_H$.

Graph homomorphisms

Definition (Graph Homomorphism) Given $G = (V_G; E_G)$ and $H = (V_H; E_H)$ graphs, a graph homomorphism is a map $f : V_G \to V_H$ that respects edges, i.e. for all $(u, v) \in E_G$, $(f(u), f(v)) \in E_H$.

Example: k-colouring of G is the same as a graph homomorphism $G \rightarrow K_k$.

 $K_k = \text{complete graph on } k \text{ vertices.}$

Promise Graph Colourings

Let G, H graphs such that $G \rightarrow H$. The (decision) Promise Constraint Satisfaction Problem PCSP (G, H) is the following problem:

Promise Graph Colourings

Let G, H graphs such that $G \rightarrow H$. The (decision) Promise Constraint Satisfaction Problem PCSP (G, H) is the following problem:

Conjecture [Brakensiek, Guruswami; '18] If *G* and *H* are non bipartite graphs with $G \rightarrow H$, then PCSP(*G*, *H*) is NP-hard.

Promise Graph Colourings

Let G, H graphs such that $G \rightarrow H$. The (decision) Promise Constraint Satisfaction Problem PCSP (G, H) is the following problem:

Conjecture [Brakensiek, Guruswami; '18] If *G* and *H* are non bipartite graphs with $G \rightarrow H$, then PCSP(*G*, *H*) is NP-hard.

Theorem (Krokhin, Opršal; '19 - Wrochna, Živný; '20) For any 3-colourable non bipartite graph G, PCSP(G, K_3) is NP-hard. An hypergraph colouring is an assignment of colours to the vertices of ${\cal H}$ such that no hyperedge is monochrome.

An hypergraph colouring is an assignment of colours to the vertices of ${\cal H}$ such that no hyperedge is monochrome.

Definition (Hypergraph Homomorphism)

Let $\mathcal{H}_1 = (V_1; \mathcal{E}_1)$ and $\mathcal{H}_2 = (V_2; \mathcal{E}_2)$ hypergraphs. Then a Hypergraph homomorphism $\mathcal{H}_1, \mathcal{H}_2$ is a map $\phi : V_1 \to V_2$ such that every hyperedge of \mathcal{H}_1 is mapped to an hyperedge in \mathcal{H}_2 . An hypergraph colouring is an assignment of colours to the vertices of ${\cal H}$ such that no hyperedge is monochrome.

Definition (Hypergraph Homomorphism)

Let $\mathcal{H}_1 = (V_1; \mathcal{E}_1)$ and $\mathcal{H}_2 = (V_2; \mathcal{E}_2)$ hypergraphs. Then a Hypergraph homomorphism $\mathcal{H}_1, \mathcal{H}_2$ is a map $\phi : V_1 \to V_2$ such that every hyperedge of \mathcal{H}_1 is mapped to an hyperedge in \mathcal{H}_2 .

Example: if \mathcal{H} is hypergraph, then a k-colouring is a homomorphism $\mathcal{H} \to \mathcal{K}_k = ([k]; \{E \subseteq [k] \mid |E| \ge 2\}).$

Let \mathcal{G} , \mathcal{H} hypergraphs such that $\mathcal{G} \to \mathcal{H}$. The (decision) Promise Constraint Satisfaction Problem PCSP (\mathcal{G} , \mathcal{H}) is the following problem:

Input:	hypergraph ${\mathcal I}$
Output:	$\underline{Yes} \text{ if } \mathcal{I} \to \mathcal{G}$
	$\underline{No} \text{ if } \mathcal{I} \nrightarrow \mathcal{H}$

Let \mathcal{G} , \mathcal{H} hypergraphs such that $\mathcal{G} \to \mathcal{H}$. The (decision) Promise Constraint Satisfaction Problem PCSP (\mathcal{G} , \mathcal{H}) is the following problem:

 $\begin{array}{ll} \textit{Input:} & \text{hypergraph } \mathcal{I} \\ \textit{Output:} & \underline{\textbf{Yes}} \text{ if } \mathcal{I} \rightarrow \mathcal{G} \\ & \underline{\textbf{No}} \text{ if } \mathcal{I} \not\rightarrow \mathcal{H} \end{array}$

Theorem (Dinur, Regev, Smyth; '05) The problem $PCSP(\mathcal{K}_k, \mathcal{K}_\ell)$ for 3-uniform hypergraphs is NP-hard for any $\ell \ge k \ge 2$.

Definition (LO_k)

$$\mathsf{LO}_k = \begin{cases} \mathsf{Vertex \ set:} & [k] = \{1, \dots, k\} \\ \mathsf{Hyperedges:} & (x, y, z) \in [k]^3 \text{ with a unique maximum.} \end{cases}$$

Definition (LO_k)

$$\mathsf{LO}_k = \begin{cases} \mathsf{Vertex \ set:} & [k] = \{1, \dots, k\} \\ \mathsf{Hyperedges:} & (x, y, z) \in [k]^3 \text{ with a unique maximum.} \end{cases}$$

Rmk: formally, LO_k is not hypergraph but relational structure.

Definition (LO_k)

$$\mathsf{LO}_k = \begin{cases} \mathsf{Vertex \ set:} & [k] = \{1, \dots, k\} \\ \mathsf{Hyperedges:} & (x, y, z) \in [k]^3 \text{ with a unique maximum.} \end{cases}$$

Rmk: formally, LO_k is not hypergraph but relational structure. Giving an LO *k*-colouring for 3-uniform \mathcal{H} is the same as homomorphism $\mathcal{H} \to LO_k$.

Conjecture [Barto, Battistelli, Berg; '21]

For any $\ell \geq k \geq 2$, PCSP(LO_k, LO_{\ell}) is NP-hard.

Conjecture [Barto, Battistelli, Berg; '21]

For any $\ell \geq k \geq 2$, PCSP(LO_k, LO_{\ell}) is NP-hard.

What is known?

Conjecture [Barto, Battistelli, Berg; '21]

For any $\ell \geq k \geq 2$, PCSP(LO_k, LO_{ℓ}) is NP-hard.

What is known?

 PCSP(LO_k, LO_ℓ) reduces to PCSP(LO_{k+1}, LO_{ℓ+1}) for any ℓ ≥ k ≥ 2 [Nakajima, Živný; '22]

Conjecture [Barto, Battistelli, Berg; '21]

For any $\ell \geq k \geq 2$, PCSP(LO_k, LO_{ℓ}) is NP-hard.

What is known?

- PCSP(LO_k, LO_ℓ) reduces to PCSP(LO_{k+1}, LO_{ℓ+1}) for any ℓ ≥ k ≥ 2 [Nakajima, Živný; '22]
- for *r*-uniform hypergraph, the corresponding problem $PCSP(LO_{r,k}, LO_{r,\ell})$ is NP-hard for $r \ge \ell - k + 4$ and $\ell \ge k \ge 2$ [Nakajima, Živný; '22]

Conjecture [Barto, Battistelli, Berg; '21]

For any $\ell \geq k \geq 2$, PCSP(LO_k, LO_{\ell}) is NP-hard.

What is known?

- PCSP(LO_k, LO_ℓ) reduces to PCSP(LO_{k+1}, LO_{ℓ+1}) for any ℓ ≥ k ≥ 2 [Nakajima, Živný; '22]
- for *r*-uniform hypergraph, the corresponding problem $PCSP(LO_{r,k}, LO_{r,\ell})$ is NP-hard for $r \ge \ell - k + 4$ and $\ell \ge k \ge 2$ [Nakajima, Živný; '22]
- $PCSP(K_k, K_\ell)$ reduces to $PCSP(LO_{k+1}, LO_{\ell+1})$ for any $\ell \ge k \ge 3$ so it is NP-hard for
 - $k \geq 3$ and $\ell = 2k 1$ [Bulín, Krokhin, Opršal; '19]
 - $k \ge 6$ and $\ell = \binom{k}{\lfloor k/2 \rfloor}$ [Wrochna, Živný; '20]

Theorem (Filakovský, Nakajima, Opršal, T., Wagner) *The problem* PCSP(LO₃, LO₄) *for 3-uniform hypergraphs is NP-hard.*

• It is not covered by the previous cases;

Theorem (Filakovský, Nakajima, Opršal, T., Wagner) *The problem* PCSP(LO₃, LO₄) *for 3-uniform hypergraphs is NP-hard.*

- It is not covered by the previous cases;
- Proof uses topological methods, extending the approach used for PCSP(G, K₃).

Polymorphisms and minion homomorphisms

Polymorphisms

Given \mathcal{A}, \mathcal{B} 3-uniform hypergraphs, their product $\mathcal{A} \times \mathcal{B}$ is the 3-uniform hypergraph with vertex set $A \times B$ and hyperedges

$$\mathcal{E}_{\mathcal{A} imes \mathcal{B}} = egin{cases} \left. ((a_1, b_1), (a_1, b_1)) \in (\mathcal{A} imes \mathcal{B})^3
ight| egin{array}{cases} (a_1, a_2, a_3) \in \mathcal{E}_\mathcal{A} \ (b_1, b_2, b_3) \in \mathcal{E}_\mathcal{B} \end{array}
ight)$$

Polymorphisms

Given \mathcal{A}, \mathcal{B} 3-uniform hypergraphs, their product $\mathcal{A} \times \mathcal{B}$ is the 3-uniform hypergraph with vertex set $A \times B$ and hyperedges

$$\mathcal{E}_{\mathcal{A} imes \mathcal{B}} = egin{cases} \left. ((a_1, b_1), (a_1, b_1)) \in (\mathcal{A} imes \mathcal{B})^3
ight| egin{array}{cases} (a_1, a_2, a_3) \in \mathcal{E}_\mathcal{A} \ (b_1, b_2, b_3) \in \mathcal{E}_\mathcal{B} \end{array}
ight)$$

The *n*-power of an hypergraph
$$\mathcal{A}$$
 is just $\mathcal{A}^n = \underbrace{\mathcal{A} \times \cdots \times \mathcal{A}}_{n \text{ times}}$.

Polymorphisms

Given \mathcal{A}, \mathcal{B} 3-uniform hypergraphs, their product $\mathcal{A} \times \mathcal{B}$ is the 3-uniform hypergraph with vertex set $A \times B$ and hyperedges

$$\mathcal{E}_{\mathcal{A} imes \mathcal{B}} = egin{cases} \left. ((a_1, b_1), (a_1, b_1)) \in (\mathcal{A} imes \mathcal{B})^3
ight| egin{array}{cases} (a_1, a_2, a_3) \in \mathcal{E}_\mathcal{A} \ (b_1, b_2, b_3) \in \mathcal{E}_\mathcal{B} \end{array}
ight)$$

The *n*-power of an hypergraph
$$\mathcal{A}$$
 is just $\mathcal{A}^n = \underbrace{\mathcal{A} \times \cdots \times \mathcal{A}}_{n \text{ times}}$.

Definition (Polymorphism)

Let $(\mathcal{A}, \mathcal{B})$ a PCSP template, then a **polymorphism** of arity *n* is an homomorphism $h : \mathcal{A}^n \to \mathcal{B}$.

The set of all polymorphisms is $Pol(\mathcal{A}, \mathcal{B})$.

Minion Homomorphisms

If we have a polymorphism, we can construct a new one by identifying coordinates and adding non-essential ones.

Example: if $f:\mathcal{A}^5\to\mathcal{B}$ is a polymorphism, then $g:\mathcal{A}^3\to\mathcal{B}$ defined as

$$g(x, y, z) = f(x, x, y, x, y)$$

is also a polymorphism.

Minion Homomorphisms

If we have a polymorphism, we can construct a new one by identifying coordinates and adding non-essential ones.

Example: if $f:\mathcal{A}^5\to\mathcal{B}$ is a polymorphism, then $g:\mathcal{A}^3\to\mathcal{B}$ defined as

$$g(x, y, z) = f(x, x, y, x, y)$$

is also a polymorphism.

Def: Let $f : \mathcal{A}^n \to \mathcal{B}$ a polymorphism and $\pi : [n] \to [m]$ a map; the π -minor of f is the polymorphism $\mathcal{A}^m \to \mathcal{B}$ defined as

$$f^{\pi}(x_1,...,x_m) = f(x_{\pi(1)},...,x_{\pi(n)})$$

Minion Homomorphisms

If we have a polymorphism, we can construct a new one by identifying coordinates and adding non-essential ones.

Example: if $f:\mathcal{A}^5\to\mathcal{B}$ is a polymorphism, then $g:\mathcal{A}^3\to\mathcal{B}$ defined as

$$g(x, y, z) = f(x, x, y, x, y)$$

is also a polymorphism.

 π

Def: Let $f : \mathcal{A}^n \to \mathcal{B}$ a polymorphism and $\pi : [n] \to [m]$ a map; the π -minor of f is the polymorphism $\mathcal{A}^m \to \mathcal{B}$ defined as

$$f^{\pi}(x_1, \dots, x_m) = f(x_{\pi(1)}, \dots, x_{\pi(n)})$$

Example: $\pi : [5] \to [3]; \pi(1) = \pi(2) = \pi(4) = 1$ and $\pi(3) = \pi(5) = 2$ defines g.

Minion Homomorphisms

If we have a polymorphism, we can construct a new one by identifying coordinates and adding non-essential ones.

Example: if $f:\mathcal{A}^5\to\mathcal{B}$ is a polymorphism, then $g:\mathcal{A}^3\to\mathcal{B}$ defined as

$$g(x, y, z) = f(x, x, y, x, y)$$

is also a polymorphism.

Def: Let $f : \mathcal{A}^n \to \mathcal{B}$ a polymorphism and $\pi : [n] \to [m]$ a map; the π -minor of f is the polymorphism $\mathcal{A}^m \to \mathcal{B}$ defined as

$$f^{\pi}(x_1, \dots, x_m) = f(x_{\pi(1)}, \dots, x_{\pi(n)})$$

Example: $\pi : [5] \to [3]; \pi(1) = \pi(2) = \pi(4) = 1$ and $\pi(3) = \pi(5) = 2$ defines g.

A minion homomorphism is a map $\eta : Pol(\mathcal{A}, \mathcal{B}) \to Pol(\mathcal{C}, \mathcal{D})$ that preserves arity and commutes with taking minors.

Let $(\mathcal{A}, \mathcal{B})$ and $(\mathcal{A}', \mathcal{B}')$ be two PCSPs. If there is a minion homomorphism $Pol(\mathcal{A}', \mathcal{B}') \rightarrow Pol(\mathcal{A}, \mathcal{B})$, then there is a log-space reduction from $PCSP(\mathcal{A}, \mathcal{B})$ to $PCSP(\mathcal{A}', \mathcal{B}')$.

Let $(\mathcal{A}, \mathcal{B})$ and $(\mathcal{A}', \mathcal{B}')$ be two PCSPs. If there is a minion homomorphism $Pol(\mathcal{A}', \mathcal{B}') \rightarrow Pol(\mathcal{A}, \mathcal{B})$, then there is a log-space reduction from $PCSP(\mathcal{A}, \mathcal{B})$ to $PCSP(\mathcal{A}', \mathcal{B}')$.

In particular, if $PCSP(\mathcal{A}, \mathcal{B})$ is NP-hard, so is $PCSP(\mathcal{A}', \mathcal{B}')$.

Let $(\mathcal{A}, \mathcal{B})$ and $(\mathcal{A}', \mathcal{B}')$ be two PCSPs. If there is a minion homomorphism $Pol(\mathcal{A}', \mathcal{B}') \rightarrow Pol(\mathcal{A}, \mathcal{B})$, then there is a log-space reduction from $PCSP(\mathcal{A}, \mathcal{B})$ to $PCSP(\mathcal{A}', \mathcal{B}')$.

In particular, if PCSP(A, B) is NP-hard, so is PCSP(A', B'). In our case, we build a minion homomorphism from $Pol(LO_3, LO_4)$

to Pol(3-SAT).

Let $(\mathcal{A}, \mathcal{B})$ and $(\mathcal{A}', \mathcal{B}')$ be two PCSPs. If there is a minion homomorphism $Pol(\mathcal{A}', \mathcal{B}') \rightarrow Pol(\mathcal{A}, \mathcal{B})$, then there is a log-space reduction from $PCSP(\mathcal{A}, \mathcal{B})$ to $PCSP(\mathcal{A}', \mathcal{B}')$.

In particular, if $PCSP(\mathcal{A}, \mathcal{B})$ is NP-hard, so is $PCSP(\mathcal{A}', \mathcal{B}')$.

In our case, we build a minion homomorphism from $Pol(LO_3, LO_4)$ to Pol(3-SAT).

Rmk: Pol(3-SAT) is equivalent to the projections $\mathscr{P}_3 = \bigcup_n \{\pi_i : [3]^n \to [3] \mid \pi_i(x_1, \dots, x_n) = x_i\}.$ Topology

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

It turns the set of homomorphisms $\mathcal{A} \to \mathcal{B}$ into a topological space $Hom(\mathcal{A}, \mathcal{B})$.

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

It turns the set of homomorphisms $\mathcal{A} \to \mathcal{B}$ into a topological space $Hom(\mathcal{A}, \mathcal{B})$.

We fix a test 3-uniform hypergraph R_3 with a specific symmetry (cyclic group of order 3) and study Hom $(R_3, -)$. Definition is rather technical, the key properties we will use are:

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

It turns the set of homomorphisms $\mathcal{A} \to \mathcal{B}$ into a topological space $Hom(\mathcal{A}, \mathcal{B})$.

We fix a test 3-uniform hypergraph R_3 with a specific symmetry (cyclic group of order 3) and study Hom $(R_3, -)$. Definition is rather technical, the key properties we will use are:

1. for any \mathcal{A} , Hom (R_3, \mathcal{A}) inherits the \mathbb{Z}_3 -symmetry

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

It turns the set of homomorphisms $\mathcal{A} \to \mathcal{B}$ into a topological space $Hom(\mathcal{A}, \mathcal{B})$.

We fix a test 3-uniform hypergraph R_3 with a specific symmetry (cyclic group of order 3) and study Hom $(R_3, -)$. Definition is rather technical, the key properties we will use are:

- 1. for any \mathcal{A} , Hom (R_3, \mathcal{A}) inherits the \mathbb{Z}_3 -symmetry
- 2. for any $\mathcal{A} \to \mathcal{B}$, there is a corresponding continuous map Hom $(R_3, \mathcal{A}) \to \text{Hom}(R_3, \mathcal{B})$ respecting the symmetry

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

It turns the set of homomorphisms $\mathcal{A} \to \mathcal{B}$ into a topological space $Hom(\mathcal{A}, \mathcal{B})$.

We fix a test 3-uniform hypergraph R_3 with a specific symmetry (cyclic group of order 3) and study Hom $(R_3, -)$. Definition is rather technical, the key properties we will use are:

- 1. for any \mathcal{A} , Hom (R_3, \mathcal{A}) inherits the \mathbb{Z}_3 -symmetry
- 2. for any $\mathcal{A} \to \mathcal{B}$, there is a corresponding continuous map Hom $(R_3, \mathcal{A}) \to \text{Hom}(R_3, \mathcal{B})$ respecting the symmetry
- 3. up to a standard notion of topological equivalence (homotopy),

 $\operatorname{Hom}(R_3,\mathcal{A}^n)\simeq (\operatorname{Hom}(R_3,\mathcal{A}))^n$.

Building the minion homomorphism - Part I

Goal: construct a minion homomorphism $Pol(LO_3, LO_4) \rightarrow \mathscr{P}_3$.

▶ Start with a polymorphism $f : LO_3^n \to LO_4$

Building the minion homomorphism - Part I

Goal: construct a minion homomorphism $Pol(LO_3, LO_4) \rightarrow \mathscr{P}_3$.

- ▶ Start with a polymorphism $f : LO_3^n \to LO_4$
- By prop. 2 and 3, there is a corresponding symmetry-preserving map

 $f_*: (\operatorname{Hom}(R_3, \operatorname{LO}_3))^n \to \operatorname{Hom}(R_3, \operatorname{LO}_4)$

Building the minion homomorphism - Part I

Goal: construct a minion homomorphism $Pol(LO_3, LO_4) \rightarrow \mathscr{P}_3$.

- ▶ Start with a polymorphism $f : LO_3^n \to LO_4$
- By prop. 2 and 3, there is a corresponding symmetry-preserving map

 $f_*: (\operatorname{Hom}(R_3, \operatorname{LO}_3))^n \to \operatorname{Hom}(R_3, \operatorname{LO}_4)$

Understanding such continuous map up to topological equivalence is still complicated, we simplify by studying the composition $\eta(f)$

$$T^n = (S^1)^n \xrightarrow{} \operatorname{Hom}(R_3, \operatorname{LO}_3^n) \xrightarrow{f_*} \operatorname{Hom}(R_3, \operatorname{LO}_4) \xrightarrow{} P^2$$

 $\eta(f)$

where P^2 is a suitable "nice" space (Eilenberg-MacLane space).

Symmetry preserving maps from $T^n = (S^1)^n$ to P^2 up to topological equivalence can be classified:

$$[T^n, P^2] \simeq \{\phi : \mathbb{Z}_3^n \to \mathbb{Z}_3 \mid \phi(1, \dots, 1) = 1\}$$

 $(\phi(1,0,\ldots,0) =$ "winding number" of f when "moving along" the first coordinate...)

Symmetry preserving maps from $T^n = (S^1)^n$ to P^2 up to topological equivalence can be classified:

$$[T^n, P^2] \simeq \{\phi : \mathbb{Z}_3^n \to \mathbb{Z}_3 \mid \phi(1, \dots, 1) = 1\}$$

 $(\phi(1,0,\ldots,0) =$ "winding number" of f when "moving along" the first coordinate...)

Lemma: The assignment

$$f \in \mathsf{Pol}^{(n)}(\mathsf{LO}_3,\mathsf{LO}_4) \mapsto \xi(f) \in [T^n,P^2] \simeq \mathscr{Z}_3^{(n)}$$

 $(\mathscr{Z}_3 = affine maps over \mathbb{Z}_3)$ respects minors, thus it is a minion homomorphism.

[X,Y] = symmetry preserving maps $X \to Y$ up to topological equivalence. 14

We have $\xi: \mathsf{Pol}(\mathsf{LO}_3, \mathsf{LO}_4) \to \mathscr{Z}_3$. By combinatorial arguments:

We have $\xi : \mathsf{Pol}(\mathsf{LO}_3, \mathsf{LO}_4) \to \mathscr{Z}_3$. By combinatorial arguments:

• There is no $f : LO_3^2 \to LO_4$ such that $\xi(f)$ is the map $\phi : (x, y) \mapsto 2x + 2y$.

We have $\xi : \mathsf{Pol}(\mathsf{LO}_3, \mathsf{LO}_4) \to \mathscr{Z}_3$. By combinatorial arguments:

- There is no $f : LO_3^2 \to LO_4$ such that $\xi(f)$ is the map $\phi : (x, y) \mapsto 2x + 2y$.
- If $\psi \in \mathscr{Z}_3$ is not constant or a projection, then ϕ is a minor of ψ .

We have $\xi : \mathsf{Pol}(\mathsf{LO}_3, \mathsf{LO}_4) \to \mathscr{Z}_3$. By combinatorial arguments:

- There is no $f : LO_3^2 \to LO_4$ such that $\xi(f)$ is the map $\phi : (x, y) \mapsto 2x + 2y$.
- If $\psi \in \mathscr{Z}_3$ is not constant or a projection, then ϕ is a minor of ψ .

Hence, $\xi(\mathsf{Pol}(\mathsf{LO}_3, \mathsf{LO}_4)) \subseteq \mathscr{P}_3$ as claimed.

Problem: Is it possible to use these topological ideas to prove NP-hardness of $PCSP(G, K_4)$?

Problem: Is it possible to use these topological ideas to prove NP-hardness of $PCSP(G, K_4)$?

Vague question: Which kind of PCSPs are suitable to be studied via topology?

Thank You!