NP-hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs

Gianluca Tasinato
ISTA

Joint work with:
M. Filakovský, T.-V. Nakajima, J. Opršal, U. Wagner

STACS 2024 - Track A

Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard problem [Karp; '72].

Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard problem [Karp; '72].

Promise Graph Colouring problem (informal): Given a
3-colourable graph G, find a k-colouring $(k \geq 4)$.

Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard problem [Karp; '72].

Promise Graph Colouring problem [Decision version]: Fix $k \geq 4$.
Given a graph G, decide if G is 3 -colourable or not even k-colourable.

Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard problem [Karp; '72].

Promise Graph Colouring problem [Decision version]: Fix $k \geq 4$.
Given a graph G, decide if G is 3 -colourable or not even k-colourable.

k	Complexity
4	NP-hard

[Khanna, Linial, Safra; '00]

Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard problem [Karp; '72].

Promise Graph Colouring problem [Decision version]: Fix $k \geq 4$.
Given a graph G, decide if G is 3 -colourable or not even k-colourable.

k	Complexity
4	NP-hard
5	NP-hard

[Khanna, Linial, Safra; '00]
[Bulín, Krokhin, Opršal; '19]

Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard problem [Karp; '72].

Promise Graph Colouring problem [Decision version]: Fix $k \geq 4$.
Given a graph G, decide if G is 3 -colourable or not even k-colourable.

k	Complexity
4	NP-hard
5	NP-hard
6	$? ? ?$
\vdots	\vdots

[Khanna, Linial, Safra; '00]
[Bulín, Krokhin, Opršal; '19]
NP-hard modulo unique games conjecture
[Dinur, Mossel, Regev; '09]
[Guruswami, Sandeep; '20]
[Breverman, Khot, Lifshitz, Mulzer; '21]

Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard problem [Karp; '72].

Promise Graph Colouring problem [Decision version]: Fix $k \geq 4$.
Given a graph G, decide if G is 3 -colourable or not even k-colourable.

k	Complexity	
4	NP-hard	[Khanna, Linial, Safra; '00]
5	NP-hard	[Bulín, Krokhin, Opršal; '19]
6	$? ? ?$	NP-hard modulo unique games conjecture
\vdots	\vdots	[Dinur, Mossel, Regev; '09]
$n^{0.19996}$	P	[Guruswami, Sandeep; '20]
		[Breverman, Khot, Lifshitz, Mulzer; '21]
	[Kawarabayashi, Thorup; '17]	

Graph $=$ undirected simple finite graph without loops on n vertices.

Graph homomorphisms

Definition (Graph Homomorphism)
Given $G=\left(V_{G} ; E_{G}\right)$ and $H=\left(V_{H} ; E_{H}\right)$ graphs, a graph
homomorphism is a map $f: V_{G} \rightarrow V_{H}$ that respects edges, i.e. for all $(u, v) \in E_{G},(f(u), f(v)) \in E_{H}$.

Graph homomorphisms

Definition (Graph Homomorphism)

Given $G=\left(V_{G} ; E_{G}\right)$ and $H=\left(V_{H} ; E_{H}\right)$ graphs, a graph
homomorphism is a map $f: V_{G} \rightarrow V_{H}$ that respects edges, i.e. for all $(u, v) \in E_{G},(f(u), f(v)) \in E_{H}$.

Example: k-colouring of G is the same as a graph homomorphism $G \rightarrow K_{k}$.

$$
K_{k}=\text { complete graph on } k \text { vertices. }
$$

Promise Graph Colourings

Let G, H graphs such that $G \rightarrow H$. The (decision) Promise Constraint Satisfaction Problem $\operatorname{PCSP}(G, H)$ is the following problem:

$$
\begin{aligned}
\text { Input: } & \text { a graph } I \\
\text { Output: } & \text { Yes if } I \rightarrow G \\
& \text { No if } I \nrightarrow H
\end{aligned}
$$

Promise Graph Colourings

Let G, H graphs such that $G \rightarrow H$. The (decision) Promise Constraint Satisfaction Problem PCSP (G, H) is the following problem:

$$
\begin{aligned}
\text { Input: } & \text { a graph } I \\
\text { Output: } & \underline{\text { Yes if } I \rightarrow G} \\
& \text { No if } I \nrightarrow H
\end{aligned}
$$

Conjecture [Brakensiek, Guruswami; '18]

If G and H are non bipartite graphs with $G \rightarrow H$, then $\operatorname{PCSP}(G, H)$ is NP-hard.

Promise Graph Colourings

Let G, H graphs such that $G \rightarrow H$. The (decision) Promise Constraint Satisfaction Problem PCSP (G, H) is the following problem:

$$
\begin{aligned}
\text { Input: } & \text { a graph } I \\
\text { Output: } & \underline{\text { Yes if } I \rightarrow G} \\
& \underline{\text { No if } I \nrightarrow H}
\end{aligned}
$$

Conjecture [Brakensiek, Guruswami; '18]

If G and H are non bipartite graphs with $G \rightarrow H$, then
$\operatorname{PCSP}(G, H)$ is NP-hard.

Theorem (Krokhin, Opršal; '19-Wrochna, Živný; '20)
For any 3-colourable non bipartite graph $G, \operatorname{PCSP}\left(G, K_{3}\right)$ is NP-hard.

Hypergraph colourings

An hypergraph colouring is an assignment of colours to the vertices of \mathcal{H} such that no hyperedge is monochrome.

Hypergraph colourings

An hypergraph colouring is an assignment of colours to the vertices of \mathcal{H} such that no hyperedge is monochrome.

Definition (Hypergraph Homomorphism)

Let $\mathcal{H}_{1}=\left(V_{1} ; \mathcal{E}_{1}\right)$ and $\mathcal{H}_{2}=\left(V_{2} ; \mathcal{E}_{2}\right)$ hypergraphs. Then a
Hypergraph homomorphism $\mathcal{H}_{1}, \mathcal{H}_{2}$ is a map $\phi: V_{1} \rightarrow V_{2}$ such that every hyperedge of \mathcal{H}_{1} is mapped to an hyperedge in \mathcal{H}_{2}.

Hypergraph colourings

An hypergraph colouring is an assignment of colours to the vertices of \mathcal{H} such that no hyperedge is monochrome.

Definition (Hypergraph Homomorphism)

Let $\mathcal{H}_{1}=\left(V_{1} ; \mathcal{E}_{1}\right)$ and $\mathcal{H}_{2}=\left(V_{2} ; \mathcal{E}_{2}\right)$ hypergraphs. Then a
Hypergraph homomorphism $\mathcal{H}_{1}, \mathcal{H}_{2}$ is a map $\phi: V_{1} \rightarrow V_{2}$ such that every hyperedge of \mathcal{H}_{1} is mapped to an hyperedge in \mathcal{H}_{2}.

Example: if \mathcal{H} is hypergraph, then a k-colouring is a homomorphism $\mathcal{H} \rightarrow \mathcal{K}_{k}=([k] ;\{E \subseteq[k]| | E \mid \geq 2\})$.

Hardness of Promise Hypergraph colourings

Let \mathcal{G}, \mathcal{H} hypergraphs such that $\mathcal{G} \rightarrow \mathcal{H}$. The (decision) Promise Constraint Satisfaction Problem $\operatorname{PCSP}(\mathcal{G}, \mathcal{H})$ is the following problem:

$$
\begin{aligned}
\text { Input: } & \text { hypergraph } \mathcal{I} \\
\text { Output: } & \underline{\text { Yes if } \mathcal{I} \rightarrow \mathcal{G}} \\
& \underline{\text { No }} \text { if } \mathcal{I} \leftrightarrow \mathcal{H}
\end{aligned}
$$

Hardness of Promise Hypergraph colourings

Let \mathcal{G}, \mathcal{H} hypergraphs such that $\mathcal{G} \rightarrow \mathcal{H}$. The (decision) Promise Constraint Satisfaction Problem $\operatorname{PCSP}(\mathcal{G}, \mathcal{H})$ is the following problem:

$$
\begin{aligned}
\text { Input: } & \text { hypergraph } \mathcal{I} \\
\text { Output: } & \underline{\text { Yes if } \mathcal{I} \rightarrow \mathcal{G}} \\
& \underline{\text { No }} \text { if } \mathcal{I} \rightarrow \mathcal{H}
\end{aligned}
$$

Theorem (Dinur, Regev, Smyth; '05)
The problem $\operatorname{PCSP}\left(\mathcal{K}_{k}, \mathcal{K}_{\ell}\right)$ for 3-uniform hypergraphs is NP-hard for any $\ell \geq k \geq 2$.

Linearly Ordered Colourings

> Informal: find a hypergraph colouring where each hyperedge has a unique maximum (linearly ordered colouring).

Linearly Ordered Colourings

Informal: find a hypergraph colouring where each hyperedge has a unique maximum (linearly ordered colouring).

Definition $\left(L O_{k}\right)$

$$
\mathrm{LO}_{k}= \begin{cases}\text { Vertex set: } & {[k]=\{1, \ldots, k\}} \\ \text { Hyperedges: } & (x, y, z) \in[k]^{3} \text { with a unique maximum } .\end{cases}
$$

Linearly Ordered Colourings

Informal: find a hypergraph colouring where each hyperedge has a unique maximum (linearly ordered colouring).

Definition $\left(L O_{k}\right)$

$$
\mathrm{LO}_{k}= \begin{cases}\text { Vertex set: } & {[k]=\{1, \ldots, k\}} \\ \text { Hyperedges: } & (x, y, z) \in[k]^{3} \text { with a unique maximum } .\end{cases}
$$

Rmk: formally, LO_{k} is not hypergraph but relational structure.

Linearly Ordered Colourings

Informal: find a hypergraph colouring where each hyperedge has a unique maximum (linearly ordered colouring).

Definition $\left(L O_{k}\right)$

$$
\mathrm{LO}_{k}= \begin{cases}\text { Vertex set: } & {[k]=\{1, \ldots, k\}} \\ \text { Hyperedges: } & (x, y, z) \in[k]^{3} \text { with a unique maximum } .\end{cases}
$$

Rmk: formally, LO_{k} is not hypergraph but relational structure.
Giving an LO k-colouring for 3 -uniform \mathcal{H} is the same as homomorphism $\mathcal{H} \rightarrow \mathrm{LO}_{k}$.

Hardness of LO-colourings

Conjecture [Barto, Battistelli, Berg; '21]
For any $\ell \geq k \geq 2, \operatorname{PCSP}\left(\mathrm{LO}_{k}, \mathrm{LO}_{\ell}\right)$ is NP-hard.

Hardness of LO-colourings

Conjecture [Barto, Battistelli, Berg; '21]
 For any $\ell \geq k \geq 2, \mathrm{PCSP}\left(\mathrm{LO}_{k}, \mathrm{LO}_{\ell}\right)$ is NP-hard.

What is known?

Hardness of LO-colourings

Conjecture [Barto, Battistelli, Berg; '21]
 For any $\ell \geq k \geq 2, \operatorname{PCSP}\left(\mathrm{LO}_{k}, \mathrm{LO}_{\ell}\right)$ is NP-hard.

What is known?

- $\operatorname{PCSP}\left(\mathrm{LO}_{k}, \mathrm{LO}_{\ell}\right)$ reduces to $\operatorname{PCSP}\left(\mathrm{LO}_{k+1}, \mathrm{LO}_{\ell+1}\right)$ for any $\ell \geq k \geq 2$ [Nakajima, Živný; '22]

Hardness of LO-colourings

Conjecture [Barto, Battistelli, Berg; '21]
 For any $\ell \geq k \geq 2, \operatorname{PCSP}\left(\mathrm{LO}_{k}, \mathrm{LO}_{\ell}\right)$ is NP-hard.

What is known?

- $\operatorname{PCSP}\left(\mathrm{LO}_{k}, \mathrm{LO}_{\ell}\right)$ reduces to $\operatorname{PCSP}\left(\mathrm{LO}_{k+1}, \mathrm{LO}_{\ell+1}\right)$ for any $\ell \geq k \geq 2$ [Nakajima, Živný; '22]
- for r-uniform hypergraph, the corresponding problem $\operatorname{PCSP}\left(\mathrm{LO}_{r, k}, \mathrm{LO}_{r, \ell}\right)$ is NP-hard for $r \geq \ell-k+4$ and $\ell \geq k \geq 2$ [Nakajima, Živný; '22]

Hardness of LO-colourings

Conjecture [Barto, Battistelli, Berg; '21]

For any $\ell \geq k \geq 2, \operatorname{PCSP}\left(\mathrm{LO}_{k}, \mathrm{LO}_{\ell}\right)$ is NP-hard.

What is known?

- $\operatorname{PCSP}\left(\mathrm{LO}_{k}, \mathrm{LO}_{\ell}\right)$ reduces to $\operatorname{PCSP}\left(\mathrm{LO}_{k+1}, \mathrm{LO}_{\ell+1}\right)$ for any $\ell \geq k \geq 2$ [Nakajima, Živný; '22]
- for r-uniform hypergraph, the corresponding problem $\operatorname{PCSP}\left(\mathrm{LO}_{r, k}, \mathrm{LO}_{r, \ell}\right)$ is NP-hard for $r \geq \ell-k+4$ and $\ell \geq k \geq 2$ [Nakajima, Živný; '22]
- $\operatorname{PCSP}\left(K_{k}, K_{\ell}\right)$ reduces to $\operatorname{PCSP}\left(\mathrm{LO}_{k+1}, \mathrm{LO}_{\ell+1}\right)$ for any $\ell \geq k \geq 3$ so it is NP-hard for
- $k \geq 3$ and $\ell=2 k-1$ [Bulín, Krokhin, Opršal; '19]
- $k \geq 6$ and $\ell=\binom{k}{\lfloor k / 2\rfloor}$ [Wrochna, Živný; '20]

Our Result

Theorem (Filakovský, Nakajima, Opršal, T., Wagner)
The problem $\operatorname{PCSP}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right)$ for 3 -uniform hypergraphs is NP-hard.

- It is not covered by the previous cases;

Our Result

Theorem (Filakovský, Nakajima, Opršal, T., Wagner)
The problem $\operatorname{PCSP}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right)$ for 3 -uniform hypergraphs is NP-hard.

- It is not covered by the previous cases;
- Proof uses topological methods, extending the approach used for $\operatorname{PCSP}\left(G, K_{3}\right)$.

Polymorphisms and minion

 homomorphisms
Polymorphisms

Given \mathcal{A}, \mathcal{B} 3-uniform hypergraphs, their product $\mathcal{A} \times \mathcal{B}$ is the 3-uniform hypergraph with vertex set $A \times B$ and hyperedges

$$
\mathcal{E}_{\mathcal{A} \times \mathcal{B}}=\left\{\begin{array}{l|l}
\left(\left(a_{1}, b_{1}\right),\left(a_{1}, b_{1}\right),\left(a_{1}, b_{1}\right)\right) \in(A \times B)^{3} & \begin{array}{l}
\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{E}_{\mathcal{A}} \\
\left(b_{1}, b_{2}, b_{3}\right) \in \mathcal{E}_{\mathcal{B}}
\end{array}
\end{array}\right\}
$$

Polymorphisms

Given \mathcal{A}, \mathcal{B} 3-uniform hypergraphs, their product $\mathcal{A} \times \mathcal{B}$ is the 3-uniform hypergraph with vertex set $A \times B$ and hyperedges
$\mathcal{E}_{\mathcal{A} \times \mathcal{B}}=\left\{\begin{array}{l|l}\left(\left(a_{1}, b_{1}\right),\left(a_{1}, b_{1}\right),\left(a_{1}, b_{1}\right)\right) \in(A \times B)^{3} & \begin{array}{l}\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{E}_{\mathcal{A}} \\ \left(b_{1}, b_{2}, b_{3}\right) \in \mathcal{E}_{\mathcal{B}}\end{array}\end{array}\right\}$

The n-power of an hypergraph \mathcal{A} is just $\mathcal{A}^{n}=\underbrace{\mathcal{A} \times \cdots \times \mathcal{A}}_{n \text { times }}$.

Polymorphisms

Given $\mathcal{A}, \mathcal{B} 3$-uniform hypergraphs, their product $\mathcal{A} \times \mathcal{B}$ is the 3 -uniform hypergraph with vertex set $A \times B$ and hyperedges
$\mathcal{E}_{\mathcal{A} \times \mathcal{B}}=\left\{\begin{array}{l|l}\left(\left(a_{1}, b_{1}\right),\left(a_{1}, b_{1}\right),\left(a_{1}, b_{1}\right)\right) \in(A \times B)^{3} & \begin{array}{l}\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{E}_{\mathcal{A}} \\ \left(b_{1}, b_{2}, b_{3}\right) \in \mathcal{E}_{\mathcal{B}}\end{array}\end{array}\right\}$

The n-power of an hypergraph \mathcal{A} is just $\mathcal{A}^{n}=\underbrace{\mathcal{A} \times \cdots \times \mathcal{A}}_{n \text { times }}$.

Definition (Polymorphism)

Let $(\mathcal{A}, \mathcal{B})$ a PCSP template, then a polymorphism of arity n is an homomorphism $h: \mathcal{A}^{n} \rightarrow \mathcal{B}$.

The set of all polymorphisms is $\operatorname{Pol}(\mathcal{A}, \mathcal{B})$.

Minion Homomorphisms

If we have a polymorphism, we can construct a new one by identifying coordinates and adding non-essential ones.

Example: if $f: \mathcal{A}^{5} \rightarrow \mathcal{B}$ is a polymorphism, then $g: \mathcal{A}^{3} \rightarrow \mathcal{B}$ defined as

$$
g(x, y, z)=f(x, x, y, x, y)
$$

is also a polymorphism.

Minion Homomorphisms

If we have a polymorphism, we can construct a new one by identifying coordinates and adding non-essential ones.

Example: if $f: \mathcal{A}^{5} \rightarrow \mathcal{B}$ is a polymorphism, then $g: \mathcal{A}^{3} \rightarrow \mathcal{B}$ defined as

$$
g(x, y, z)=f(x, x, y, x, y)
$$

is also a polymorphism.
Def: Let $f: \mathcal{A}^{n} \rightarrow \mathcal{B}$ a polymorphism and $\pi:[n] \rightarrow[m]$ a map; the π-minor of f is the polymorphism $\mathcal{A}^{m} \rightarrow \mathcal{B}$ defined as

$$
f^{\pi}\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)
$$

Minion Homomorphisms

If we have a polymorphism, we can construct a new one by identifying coordinates and adding non-essential ones.

Example: if $f: \mathcal{A}^{5} \rightarrow \mathcal{B}$ is a polymorphism, then $g: \mathcal{A}^{3} \rightarrow \mathcal{B}$ defined as

$$
g(x, y, z)=f(x, x, y, x, y)
$$

is also a polymorphism.
Def: Let $f: \mathcal{A}^{n} \rightarrow \mathcal{B}$ a polymorphism and $\pi:[n] \rightarrow[m]$ a map; the π-minor of f is the polymorphism $\mathcal{A}^{m} \rightarrow \mathcal{B}$ defined as

$$
f^{\pi}\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)
$$

Example: π : [5] $\rightarrow[3] ; \pi(1)=\pi(2)=\pi(4)=1$ and $\pi(3)=\pi(5)=2$ defines g.

Minion Homomorphisms

If we have a polymorphism, we can construct a new one by identifying coordinates and adding non-essential ones.

Example: if $f: \mathcal{A}^{5} \rightarrow \mathcal{B}$ is a polymorphism, then $g: \mathcal{A}^{3} \rightarrow \mathcal{B}$ defined as

$$
g(x, y, z)=f(x, x, y, x, y)
$$

is also a polymorphism.
Def: Let $f: \mathcal{A}^{n} \rightarrow \mathcal{B}$ a polymorphism and $\pi:[n] \rightarrow[m]$ a map; the π-minor of f is the polymorphism $\mathcal{A}^{m} \rightarrow \mathcal{B}$ defined as

$$
f^{\pi}\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)
$$

Example: π : [5] $\rightarrow[3] ; \pi(1)=\pi(2)=\pi(4)=1$ and $\pi(3)=\pi(5)=2$ defines g.

A minion homomorphism is a map $\eta: \operatorname{Pol}(\mathcal{A}, \mathcal{B}) \rightarrow \operatorname{Pol}(\mathcal{C}, \mathcal{D})$ that preserves arity and commutes with taking minors.

Minon Homomorphisms and reductions

Theorem (Bulín, Krokhin, Opršal, '19)
Let $(\mathcal{A}, \mathcal{B})$ and $\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$ be two PCSPs. If there is a minion homomorphism $\operatorname{Pol}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right) \rightarrow \operatorname{Pol}(\mathcal{A}, \mathcal{B})$, then there is a log-space reduction from $\operatorname{PCSP}(\mathcal{A}, \mathcal{B})$ to $\operatorname{PCSP}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$.

Minon Homomorphisms and reductions

Theorem (Bulín, Krokhin, Opršal, '19)
Let $(\mathcal{A}, \mathcal{B})$ and $\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$ be two PCSPs. If there is a minion homomorphism $\operatorname{Pol}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right) \rightarrow \operatorname{Pol}(\mathcal{A}, \mathcal{B})$, then there is a log-space reduction from $\operatorname{PCSP}(\mathcal{A}, \mathcal{B})$ to $\operatorname{PCSP}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$.

In particular, if $\operatorname{PCSP}(\mathcal{A}, \mathcal{B})$ is NP-hard, so is $\operatorname{PCSP}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$.

Minon Homomorphisms and reductions

Theorem (Bulín, Krokhin, Opršal, '19)

Let $(\mathcal{A}, \mathcal{B})$ and $\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$ be two PCSPs. If there is a minion homomorphism $\operatorname{Pol}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right) \rightarrow \operatorname{Pol}(\mathcal{A}, \mathcal{B})$, then there is a log-space reduction from $\operatorname{PCSP}(\mathcal{A}, \mathcal{B})$ to $\operatorname{PCSP}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$.

In particular, if $\operatorname{PCSP}(\mathcal{A}, \mathcal{B})$ is NP-hard, so is $\operatorname{PCSP}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$.
In our case, we build a minion homomorphism from $\operatorname{Pol}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right)$ to Pol(3-SAT).

Minon Homomorphisms and reductions

Theorem (Bulín, Krokhin, Opršal, '19)

Let $(\mathcal{A}, \mathcal{B})$ and $\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$ be two PCSPs. If there is a minion homomorphism $\operatorname{Pol}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right) \rightarrow \operatorname{Pol}(\mathcal{A}, \mathcal{B})$, then there is a log-space reduction from $\operatorname{PCSP}(\mathcal{A}, \mathcal{B})$ to $\operatorname{PCSP}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$.

In particular, if $\operatorname{PCSP}(\mathcal{A}, \mathcal{B})$ is NP-hard, so is $\operatorname{PCSP}\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}\right)$.
In our case, we build a minion homomorphism from $\operatorname{Pol}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right)$ to Pol(3-SAT).

Rmk: $\operatorname{Pol}(3-\mathrm{SAT})$ is equivalent to the projections
$\mathscr{P}_{3}=\bigcup_{n}\left\{\pi_{i}:[3]^{n} \rightarrow[3] \mid \pi_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}\right\}$.

Topology

From hypergraphs to topology: Hom complexes

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

From hypergraphs to topology: Hom complexes

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

It turns the set of homomorphisms $\mathcal{A} \rightarrow \mathcal{B}$ into a topological space $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$.

From hypergraphs to topology: Hom complexes

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

It turns the set of homomorphisms $\mathcal{A} \rightarrow \mathcal{B}$ into a topological space $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$.

We fix a test 3-uniform hypergraph R_{3} with a specific symmetry (cyclic group of order 3) and study $\operatorname{Hom}\left(R_{3},-\right)$. Definition is rather technical, the key properties we will use are:

From hypergraphs to topology: Hom complexes

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

It turns the set of homomorphisms $\mathcal{A} \rightarrow \mathcal{B}$ into a topological space $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$.

We fix a test 3-uniform hypergraph R_{3} with a specific symmetry (cyclic group of order 3) and study $\operatorname{Hom}\left(R_{3},-\right)$. Definition is rather technical, the key properties we will use are:

1. for any \mathcal{A}, $\operatorname{Hom}\left(R_{3}, \mathcal{A}\right)$ inherits the \mathbb{Z}_{3}-symmetry

From hypergraphs to topology: Hom complexes

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

It turns the set of homomorphisms $\mathcal{A} \rightarrow \mathcal{B}$ into a topological space $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$.

We fix a test 3-uniform hypergraph R_{3} with a specific symmetry (cyclic group of order 3) and study $\operatorname{Hom}\left(R_{3},-\right)$. Definition is rather technical, the key properties we will use are:

1. for any $\mathcal{A}, \operatorname{Hom}\left(R_{3}, \mathcal{A}\right)$ inherits the \mathbb{Z}_{3}-symmetry
2. for any $\mathcal{A} \rightarrow \mathcal{B}$, there is a corresponding continuous map $\operatorname{Hom}\left(R_{3}, \mathcal{A}\right) \rightarrow \operatorname{Hom}\left(R_{3}, \mathcal{B}\right)$ respecting the symmetry

From hypergraphs to topology: Hom complexes

Hom-complex is a well-studied construction in topological combinatorics [Lovász; '78].

It turns the set of homomorphisms $\mathcal{A} \rightarrow \mathcal{B}$ into a topological space $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$.

We fix a test 3-uniform hypergraph R_{3} with a specific symmetry (cyclic group of order 3) and study $\operatorname{Hom}\left(R_{3},-\right)$. Definition is rather technical, the key properties we will use are:

1. for any $\mathcal{A}, \operatorname{Hom}\left(R_{3}, \mathcal{A}\right)$ inherits the \mathbb{Z}_{3}-symmetry
2. for any $\mathcal{A} \rightarrow \mathcal{B}$, there is a corresponding continuous map
$\operatorname{Hom}\left(R_{3}, \mathcal{A}\right) \rightarrow \operatorname{Hom}\left(R_{3}, \mathcal{B}\right)$ respecting the symmetry
3. up to a standard notion of topological equivalence (homotopy), $\operatorname{Hom}\left(R_{3}, \mathcal{A}^{n}\right) \simeq\left(\operatorname{Hom}\left(R_{3}, \mathcal{A}\right)\right)^{n}$.

Building the minion homomorphism - Part I

Goal: construct a minion homomorphism $\operatorname{Pol}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right) \rightarrow \mathscr{P}_{3}$.

- Start with a polymorphism $f: \mathrm{LO}_{3}^{n} \rightarrow \mathrm{LO}_{4}$

Building the minion homomorphism - Part I

Goal: construct a minion homomorphism $\operatorname{Pol}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right) \rightarrow \mathscr{P}_{3}$.

- Start with a polymorphism $f: \mathrm{LO}_{3}^{n} \rightarrow \mathrm{LO}_{4}$
- By prop. 2 and 3 , there is a corresponding
symmetry-preserving map

$$
f_{*}:\left(\operatorname{Hom}\left(R_{3}, \mathrm{LO}_{3}\right)\right)^{n} \rightarrow \operatorname{Hom}\left(R_{3}, \mathrm{LO}_{4}\right)
$$

Building the minion homomorphism - Part I

Goal: construct a minion homomorphism $\operatorname{Pol}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right) \rightarrow \mathscr{P}_{3}$.

- Start with a polymorphism $f: \mathrm{LO}_{3}^{n} \rightarrow \mathrm{LO}_{4}$
- By prop. 2 and 3 , there is a corresponding
symmetry-preserving map

$$
f_{*}:\left(\operatorname{Hom}\left(R_{3}, \mathrm{LO}_{3}\right)\right)^{n} \rightarrow \operatorname{Hom}\left(R_{3}, \mathrm{LO}_{4}\right)
$$

Understanding such continuous map up to topological equivalence is still complicated, we simplify by studying the composition $\eta(f)$

$$
T^{n}=\left(S^{1}\right)^{n} \rightarrow \operatorname{Hom}\left(R_{3}, \mathrm{LO}_{3}^{n}\right) \underset{\eta(f)}{f_{*}} \operatorname{Hom}\left(R_{3}, \mathrm{LO}_{4}\right) \rightarrow P^{2}
$$

where P^{2} is a suitable "nice" space (Eilenberg-MacLane space).

Building the minon homomorphism - Part II

Symmetry preserving maps from $T^{n}=\left(S^{1}\right)^{n}$ to P^{2} up to topological equivalence can be classified:

$$
\left[T^{n}, P^{2}\right] \simeq\left\{\phi: \mathbb{Z}_{3}^{n} \rightarrow \mathbb{Z}_{3} \mid \phi(1, \ldots, 1)=1\right\}
$$

$(\phi(1,0, \ldots, 0)=$ "winding number" of f when "moving along" the first coordinate...)

Building the minon homomorphism - Part II

Symmetry preserving maps from $T^{n}=\left(S^{1}\right)^{n}$ to P^{2} up to topological equivalence can be classified:

$$
\left[T^{n}, P^{2}\right] \simeq\left\{\phi: \mathbb{Z}_{3}^{n} \rightarrow \mathbb{Z}_{3} \mid \phi(1, \ldots, 1)=1\right\}
$$

$(\phi(1,0, \ldots, 0)=$ "winding number" of f when "moving along" the first coordinate...)

Lemma: The assignment

$$
f \in \operatorname{Pol}^{(n)}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right) \mapsto \xi(f) \in\left[T^{n}, P^{2}\right] \simeq \mathscr{Z}_{3}^{(n)}
$$

$\left(\mathscr{Z}_{3}=\right.$ affine maps over $\left.\mathbb{Z}_{3}\right)$ respects minors, thus it is a minion homomorphism.

$$
[X, Y]=\text { symmetry preserving maps } X \rightarrow Y \text { up to topological equivalence. }
$$

Wrapping up

We have $\xi: \operatorname{Pol}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right) \rightarrow \mathscr{Z}_{3}$. By combinatorial arguments:

Wrapping up

We have $\xi: \mathrm{Pol}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right) \rightarrow \mathscr{Z}_{3}$. By combinatorial arguments:

- There is no $f: \mathrm{LO}_{3}^{2} \rightarrow \mathrm{LO}_{4}$ such that $\xi(f)$ is the map $\phi:(x, y) \mapsto 2 x+2 y$.

Wrapping up

We have $\xi: \mathrm{Pol}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right) \rightarrow \mathscr{Z}_{3}$. By combinatorial arguments:

- There is no $f: \mathrm{LO}_{3}^{2} \rightarrow \mathrm{LO}_{4}$ such that $\xi(f)$ is the map $\phi:(x, y) \mapsto 2 x+2 y$.
- If $\psi \in \mathscr{Z}_{3}$ is not constant or a projection, then ϕ is a minor of ψ.

Wrapping up

We have $\xi: \operatorname{Pol}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right) \rightarrow \mathscr{Z}_{3}$. By combinatorial arguments:

- There is no $f: \mathrm{LO}_{3}^{2} \rightarrow \mathrm{LO}_{4}$ such that $\xi(f)$ is the map $\phi:(x, y) \mapsto 2 x+2 y$.
- If $\psi \in \mathscr{Z}_{3}$ is not constant or a projection, then ϕ is a minor of ψ.

Hence, $\xi\left(\operatorname{Pol}\left(\mathrm{LO}_{3}, \mathrm{LO}_{4}\right)\right) \subseteq \mathscr{P}_{3}$ as claimed.

What next?

Problem: Is it possible to use these topological ideas to prove NP-hardness of $\operatorname{PCSP}\left(G, K_{4}\right)$?

What next?

Problem: Is it possible to use these topological ideas to prove NP-hardness of $\operatorname{PCSP}\left(G, K_{4}\right)$?

Vague question: Which kind of PCSPs are suitable to be studied via topology?

Thank You!

