NP-hardness of linearly ordered 4-colouring
of 3-colourable 3-uniform hypergraphs

Gianluca Tasinato

ISTA
Joint work with:
M. Filakovsky, T.-V. Nakajima, J. Oprsal, U. Wagner

STACS 2024 - Track A



Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard
problem [Karp; '72].

Graph = undirected simple finite graph without loops on n vertices.



Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard
problem [Karp; '72].

Promise Graph Colouring problem (informal): Given a
3-colourable graph G, find a k-colouring (k > 4).

Graph = undirected simple finite graph without loops on n vertices.



Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard
problem [Karp; '72].

Promise Graph Colouring problem [Decision version]: Fix k > 4.
Given a graph G, decide if G is 3-colourable or not even
k-colourable.

Graph = undirected simple finite graph without loops on n vertices.



Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard
problem [Karp; '72].

Promise Graph Colouring problem [Decision version]: Fix k > 4.
Given a graph G, decide if G is 3-colourable or not even
k-colourable.

k ‘ Complexity
4 | NP-hard [Khanna, Linial, Safra; '00]

Graph = undirected simple finite graph without loops on n vertices.



Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard
problem [Karp; '72].

Promise Graph Colouring problem [Decision version]: Fix k > 4.
Given a graph G, decide if G is 3-colourable or not even
k-colourable.

k ‘ Complexity

4 NP-hard [Khanna, Linial, Safra; '00]

5 NP-hard [Bulin, Krokhin, Oprsal; '19]

Graph = undirected simple finite graph without loops on n vertices.



Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard
problem [Karp; '72].

Promise Graph Colouring problem [Decision version]: Fix k > 4.
Given a graph G, decide if G is 3-colourable or not even
k-colourable.

k Complexity

4 NP-hard [Khanna, Linial, Safra; '00]
5 NP-hard [Bulin, Krokhin, Oprsal; '19]
6 77 NP-hard modulo unique games conjecture

[Dinur, Mossel, Regev; '09]
[Guruswami, Sandeep; '20]
[Breverman, Khot, Lifshitz, Mulzer; '21]

Graph = undirected simple finite graph without loops on n vertices.



Prelude: Promise graph colourings

Deciding if a given graph is 3-colourable is a classical NP-hard
problem [Karp; '72].

Promise Graph Colouring problem [Decision version]: Fix k > 4.
Given a graph G, decide if G is 3-colourable or not even
k-colourable.

k Complexity

4 NP-hard [Khanna, Linial, Safra; '00]
5 NP-hard [Bulin, Krokhin, Oprsal; '19]
6 77 NP-hard modulo unique games conjecture

[Dinur, Mossel, Regev; '09]
[Guruswami, Sandeep; '20]
[Breverman, Khot, Lifshitz, Mulzer; '21]

pP-19996 P [Kawarabayashi, Thorup; "17]

Graph = undirected simple finite graph without loops on n vertices.



Graph homomorphisms

Definition (Graph Homomorphism)

Given G = (Vi; Eg) and H = (Vi; En) graphs, a graph
homomorphism is a map f : Vg — Vjy that respects edges, i.e.
for all (u,v) € Eg, (f(u), f(v)) € En.



Graph homomorphisms

Definition (Graph Homomorphism)

Given G = (Vi; Eg) and H = (Vi; En) graphs, a graph
homomorphism is a map f : Vg — Vjy that respects edges, i.e.
for all (u,v) € Eg, (f(u), f(v)) € En.

Example: k-colouring of G is the same as a graph homomorphism
G — Kk.

S~

Ky = complete graph on k vertices.
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Promise Graph Colourings

Let G, H graphs such that G — H. The (decision) Promise
Constraint Satisfaction Problem PCSP (G, H) is the following
problem:

Input: a graph /
Output: Yesif | — G
No if I » H

Conjecture [Brakensiek, Guruswami; '18]
If G and H are non bipartite graphs with G — H, then
PCSP(G, H) is NP-hard.

Theorem (Krokhin, Oprsal; '19 - Wrochna, Zivny; '20)
For any 3-colourable non bipartite graph G, PCSP(G, K3) is
NP-hard.
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Hypergraph colourings

An hypergraph colouring is an assignment of colours to the vertices
of H such that no hyperedge is monochrome.

Definition (Hypergraph Homomorphism)

Let H1 = (V4;&1) and Hy = (Va; &) hypergraphs. Then a
Hypergraph homomorphism Hj,Hy is a map ¢ : V4 — V> such
that every hyperedge of #; is mapped to an hyperedge in Hoy.

Example: if H is hypergraph, then a k-colouring is a
homomorphism H — K, = ([k]; {E C [k] | |E| > 2}).
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Hardness of Promise Hypergraph colourings

Let G, H hypergraphs such that G — . The (decision) Promise
Constraint Satisfaction Problem PCSP (G, H) is the following
problem:

Input:  hypergraph 7
Output: YesifZT — G
NoifZ »H

Theorem (Dinur, Regev, Smyth; '05)
The problem PCSP(Ky, KC;) for 3-uniform hypergraphs is NP-hard
for any £ > k > 2.
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Linearly Ordered Colourings

Informal: find a hypergraph colouring where each hyperedge has a
unique maximum (linearly ordered colouring).

Definition (LOy)

Vertex set: k] ={1,..., k}
LOx =

Hyperedges:  (x,y, z) € [k]® with a unique maximum.
Rmk: formally, LOy is not hypergraph but relational structure.

Giving an LO k-colouring for 3-uniform # is the same as
homomorphism H — LOy.
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For any £ > k > 2, PCSP(LOy, LOy) is NP-hard.

What is known?

e PCSP(LOg,LOy) reduces to PCSP(LO.41,LO41) for any
¢ > k > 2 [Nakajima, Zivny; '22]
e for r-uniform hypergraph, the corresponding problem
PCSP(LO, «,LO, ¢) is NP-hard for r > ¢ — k + 4 and
¢ > k > 2 [Nakajima, Zivny; '22]
e PCSP(Kj, K¢) reduces to PCSP(LO1,LO/41) for any
¢ >k >3 soitis NP-hard for
- k >3 and ¢ =2k — 1 [Bulin, Krokhin, Oprsal; '19]
- k>6and /= (Lk/;2j) [Wrochna, 2ivny; '20]
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Our Result

Theorem (Filakovsky, Nakajima, Oprsal, T., Wagner)

The problem PCSP(LO3, LOy4) for 3-uniform hypergraphs is
NP-hard.

e It is not covered by the previous cases;

e Proof uses topological methods, extending the approach used
for PCSP(G, K3).
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Polymorphisms

Given A, B 3-uniform hypergraphs, their product A x B is the
3-uniform hypergraph with vertex set A x B and hyperedges

(a1,az,a3) € Ea
(b1, by, b3) € &

5A><B = {((31, bl), (31, bl),(al, bl)) S (A X 8)3

The n-power of an hypergraph A is just A" = A x -x A.

n times
Definition (Polymorphism)
Let (A, B) a PCSP template, then a polymorphism of arity n is
an homomorphism h: A" — B.

The set of all polymorphisms is Pol(.A, B).
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Example: if f : A> — B is a polymorphism, then g : A3 — B
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is also a polymorphism.
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Minion Homomorphisms

If we have a polymorphism, we can construct a new one by
identifying coordinates and adding non-essential ones.

Example: if f : A> — B is a polymorphism, then g : A3 — B
defined as
g(X7y7z) = f(X?X7.y7X7.y)
is also a polymorphism.
Def: Let f : A" — B a polymorphism and 7 : [n] — [m] a map;
the 7t-minor of f is the polymorphism A™ — B defined as
fﬂ—(Xla oo 7Xm) = f(XF(l)v 000 7X7r(n))
Example: 7 : [5] — [3]; m(1) = 7(2) = w(4) =1 and
7(3) = m(5) = 2 defines g.
A minion homomorphism is a map 7 : Pol(A, B) — Pol(C, D)

that preserves arity and commutes with taking minors. 10
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Minon Homomorphisms and reductions

Theorem (Bulin, Krokhin, Oprsal, '19)

Let (A, B) and (A’,B") be two PCSPs. If there is a minion
homomorphism Pol(A’, B') — Pol(A, B), then there is a
log-space reduction from PCSP(A, B) to PCSP(A’, B').

In particular, if PCSP(A, B) is NP-hard, so is PCSP(A’, B').

In our case, we build a minion homomorphism from Pol(LO3, LO4)
to Pol(3-SAT).

Rmk: Pol(3-SAT) is equivalent to the projections
Py = Untmi: 8" = Bl [ mi(xa, -y xn) = X}

11
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From hypergraphs to topology: Hom complexes

Hom-complex is a well-studied construction in topological
combinatorics [Lovasz; '78].

It turns the set of homomorphisms A — B into a topological space
Hom(.A, B).
We fix a test 3-uniform hypergraph R3 with a specific symmetry

(cyclic group of order 3) and study Hom(R3, —). Definition is
rather technical, the key properties we will use are:

1. for any A, Hom(Rj3, A) inherits the Z3-symmetry
2. for any A — B, there is a corresponding continuous map
Hom(Rs,.A) — Hom(Rs, B) respecting the symmetry
3. up to a standard notion of topological equivalence (homotopy),
Hom(Rs, A") ~ (Hom(Rj3,.A))".

12
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Building the minion homomorphism - Part |

Goal: construct a minion homomorphism Pol(LO3,L04) — Z7.

» Start with a polymorphism f : LO3 — LO4

» By prop. 2 and 3, there is a corresponding
symmetry-preserving map

f. : (Hom(R3,L03))" — Hom(Rs,LO4)

Understanding such continuous map up to topological equivalence
is still complicated, we simplify by studying the composition 7(f)

T" = (S')" — Hom(Rs,LOZ) - Hom(Rs,LO4) — P2
n(f)

where P? is a suitable “nice” space (Eilenberg-MacLane space).

13
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Building the minon homomorphism - Part Il

Symmetry preserving maps from T = (S')" to P? up to
topological equivalence can be classified:

[T", P2 ~{¢:25 - Z3 | ¢(1,...,1) =1}

(¢(1,0,...,0) = “winding number” of f when “moving along” the
first coordinate...)

Lemma: The assignment
f € Pol((LOs, LO4) > &£(F) € [T", P?] ~ 2"

(23 = affine maps over Z3) respects minors, thus it is a minion
homomorphism.

[X, Y] = symmetry preserving maps X — Y up to topological equivalence. 14
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Wrapping up

We have ¢ : Pol(LO3,L04) — 23. By combinatorial arguments:

e There is no f : LO3 — LO4 such that £(f) is the map
o (x,y) — 2x +2y.
e If ¢ € 23 is not constant or a projection, then ¢ is a minor of

.
Hence, £(Pol(LO3,L04)) C &3 as claimed.

15
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What next?

Problem:

Vague question:

Is it possible to use these topological ideas
to prove NP-hardness of PCSP(G, K4)?

Which kind of PCSPs are suitable to be
studied via topology?

16



Thank You!
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