8-Partitioning Points in 3D, and Efficiently Too

Gianluca Tasinato
ISTA

Joint work with:
B. Aronov, A. Basit, I. Ramesh, U. Wagner

SoCG - Session 9B

Prelude: Ham-Sandwich Theorem

Prelude: Ham-Sandwich Theorem

Theorem (Ham-Sandwich Theorem)

Let μ_{1}, \ldots, μ_{d} nice finite measures ${ }^{1}$ on \mathbb{R}^{d}. Then there is an affine hyperplane $H=\left\{p \in \mathbb{R}^{d} \mid\langle x, p\rangle=a\right\}$ that simultaneously bisects all the measures; i.e., for any $i \leq d$,

$$
\mu_{i}\left(\left\{p \in \mathbb{R}^{d} \mid\langle x, p\rangle>a\right\}\right)=\mu_{i}\left(\left\{p \in \mathbb{R}^{d} \mid\langle x, p\rangle<a\right\}\right)
$$

${ }^{1}$ E.g. μ_{i} uniform probability measure on convex body.

Prelude: Ham-Sandwich Theorem

Theorem (Ham-Sandwich Theorem)

Let μ_{1}, \ldots, μ_{d} nice finite measures ${ }^{1}$ on \mathbb{R}^{d}. Then there is an affine hyperplane $H=\left\{p \in \mathbb{R}^{d} \mid\langle x, p\rangle=a\right\}$ that simultaneously bisects all the measures; i.e., for any $i \leq d$,

$$
\mu_{i}\left(\left\{p \in \mathbb{R}^{d} \mid\langle x, p\rangle>a\right\}\right)=\mu_{i}\left(\left\{p \in \mathbb{R}^{d} \mid\langle x, p\rangle<a\right\}\right)
$$

${ }^{1}$ E.g. μ_{i} uniform probability measure on convex body.

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^{d}, is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^{d}}$?

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^{d}, is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^{d}}$?
$d=2$: Yes (by Ham-Sandwich theorem)

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^{d}, is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^{d}}$?
$d=2$: Yes (by Ham-Sandwich theorem)

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^{d}, is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^{d}}$?
$d=2$: Yes (by Ham-Sandwich theorem)

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^{d}, is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^{d}}$?
$d=3$: Yes, even when asking that:

- one plane has a prescribed normal direction [Hadwiger; '66]. ${ }^{2}$

[^0]
Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^{d}, is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^{d}}$?
$d=3$: Yes, even when asking that:

- one plane has a prescribed normal direction [Hadwiger; '66]. ${ }^{2}$
- one plane is orthogonal to the other two [Blagojević, Karasev; '16].

[^1]
Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^{d}, is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^{d}}$?
$d=3$: Yes, even when asking that:

- one plane has a prescribed normal direction [Hadwiger; '66]. ${ }^{2}$
- one plane is orthogonal to the other two [Blagojević, Karasev; '16].

Theorem (Aronov, Basit, Ramesh, T., Wagner; '24+)

It is always possible to find a triple of planes where the intersection line of two of them has a prescribed direction.

[^2]
Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^{d}, is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^{d}}$?

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^{d}, is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^{d}}$?
$d=4$: the problem is still open. It is not known if an equipartition always exists.

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^{d}, is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^{d}}$?
$d \geq 5$: the problem is overconstrained (d^{2} degrees of freedom, $2^{d}-1$ constraints). Explicit counterexample due to [Avis; '86].

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set $P \subseteq \mathbb{R}^{d}$ of n points in general position, is it always possible to find a d-tuple of affine hyperplanes such that every open orthant contains at most $\left\lfloor\frac{n}{2^{d}}\right\rfloor$ points in P?

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set $P \subseteq \mathbb{R}^{d}$ of n points in general position, is it always possible to find a d-tuple of affine hyperplanes such that every open orthant contains at most $\left\lfloor\frac{n}{2^{d}}\right\rfloor$ points in P?

Ex: $d=2$

-

-

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set $P \subseteq \mathbb{R}^{d}$ of n points in general position, is it always possible to find a d-tuple of affine hyperplanes such that every open orthant contains at most $\left\lfloor\frac{n}{2^{d}}\right\rfloor$ points in P?

Ex: $d=2$

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set $P \subseteq \mathbb{R}^{d}$ of n points in general position, is it always possible to find a d-tuple of affine hyperplanes such that every open orthant contains at most $\left\lfloor\frac{n}{2^{d}}\right\rfloor$ points in P?

Ex: $d=2$

In general, existence of an equipartition for the continuous problem implies existence for discrete version.

Computing 8-partitions

Computational Complexity of the discrete Griunbaum problem

Problem

Let P be a set of n points in general position in \mathbb{R}^{3}, compute an 8 -partition, i.e. a triple of planes $\left(H_{1}, H_{2}, H_{3}\right)$ such that every open orthant contains at most $\left\lfloor\frac{n}{8}\right\rfloor$ points in P.

Computational Complexity of the discrete Griunbaum problem

Problem

Let P be a set of n points in general position in \mathbb{R}^{3}, compute an 8 -partition, i.e. a triple of planes $\left(H_{1}, H_{2}, H_{3}\right)$ such that every open orthant contains at most $\left\lfloor\frac{n}{8}\right\rfloor$ points in P.

A brute-force algorithm that checks all possible triple of planes finds a solution in $O\left(n^{9}\right)$.

Computational Complexity of the discrete Grünbaum problem

Problem

Let P be a set of n points in general position in \mathbb{R}^{3}, compute an 8 -partition, i.e. a triple of planes $\left(H_{1}, H_{2}, H_{3}\right)$ such that every open orthant contains at most $\left\lfloor\frac{n}{8}\right\rfloor$ points in P.

A brute-force algorithm that checks all possible triple of planes finds a solution in $O\left(n^{9}\right)$.

In the ' 80 , an algorithm ${ }^{2}$ that computes in $O\left(n^{6}\right)$ a solution with prescribed normal for one of the planes was obtained.

[^3]
Speed Up

Theorem (Aronov, Basit, Ramesh, T., Wagner; '24+)
Let $P \subseteq \mathbb{R}^{3}$ a set of n points in general position and $v \in S^{2}$. Then there is an algorithm that computes an eight-partition $\left(H_{1}, H_{2}, H_{3}\right)$ of P with v the normal vector of H_{1} in time $O^{*}\left(n h_{2}(n)\right) \leq O^{*}\left(n^{\frac{7}{3}}\right)$; where $O^{*}(\cdot)$ hides polylog factors and $h_{2}(n)=$ max number of halving lines of a planar set of n points.

Speed Up

Theorem (Aronov, Basit, Ramesh, T., Wagner; '24+)
Let $P \subseteq \mathbb{R}^{3}$ a set of n points in general position and $v \in S^{2}$. Then there is an algorithm that computes an eight-partition $\left(H_{1}, H_{2}, H_{3}\right)$ of P with v the normal vector of H_{1} in time $O^{*}\left(n h_{2}(n)\right) \leq O^{*}\left(n^{\frac{7}{3}}\right)$; where $O^{*}(\cdot)$ hides polylog factors and $h_{2}(n)=$ max number of halving lines of a planar set of n points.

Note: the asymptotic behaviour of $h_{2}(n)$ is not known. Best bounds are:

- $O\left(n^{\frac{4}{3}}\right)$ [Dey; '97];
- $\Omega\left(n e^{\sqrt{\log n}}\right)$ [Tóth; '01]

The Algorithm

Preliminaries

Properties of the Point Set

Q: We start by finding a plane that bisects P and it has v as its normal. This divides P in two sets R (points above) and B (points below); we can search for a solution among pairs of planes that simultaneously bisect both R and B.

Properties of the Point Set

Q: We start by finding a plane that bisects P and it has v as its normal. This divides P in two sets R (points above) and B (points below); we can search for a solution among pairs of planes that simultaneously bisect both R and B.

Without loss of generality, the first plane is horizontal; up to adding "dummy" points, we can also assume $n=8 k+7$.

Properties of the Point Set

@: We start by finding a plane that bisects P and it has v as its normal. This divides P in two sets R (points above) and B (points below); we can search for a solution among pairs of planes that simultaneously bisect both R and B.

Without loss of generality, the first plane is horizontal; up to adding "dummy" points, we can also assume $n=8 k+7$.

By applying a suitable generic linear transformation we can assume that $R \subseteq\{x>0, z>0\}$ and $B \subseteq\{x<0, z<0\}$.

Properties of the Point Set

Q: We start by finding a plane that bisects P and it has v as its normal. This divides P in two sets R (points above) and B (points below); we can search for a solution among pairs of planes that simultaneously bisect both R and B.

Without loss of generality, the first plane is horizontal; up to adding "dummy" points, we can also assume $n=8 k+7$.

By applying a suitable generic linear transformation we can assume that $R \subseteq\{x>0, z>0\}$ and $B \subseteq\{x<0, z<0\}$.

Duality

By dualizing, R and B are transformed to an arrangement of planes $\mathcal{A}(R)$ and $\mathcal{A}(B)$.

Duality

By dualizing, R and B are transformed to an arrangement of planes $\mathcal{A}(R)$ and $\mathcal{A}(B)$.

A (primal) plane bisects R (resp. B) iff the corresponding dual point has half of the planes in $\mathcal{A}(R)($ resp. $\mathcal{A}(B))$ above and half below, i.e. it lies on the median level.

The Intersection Curve

Any plane in a solution has to simultaneously bisects both R and B, hence its dual point has to belong to L, the intersection of the median levels of $\mathcal{A}(R)$ and $\mathcal{A}(B)$.

The Intersection Curve

Any plane in a solution has to simultaneously bisects both R and B, hence its dual point has to belong to L, the intersection of the median levels of $\mathcal{A}(R)$ and $\mathcal{A}(B)$.

Lemma

Under the hypothesis on R and B, L is a connected y-monotone curve.

The Intersection Curve

Lemma

Under the hypothesis on R and B, L is a connected y-monotone curve.
Proof [?]:

Computing L

Lemma

The intersection curve L can be computed in time $O^{*}(n+m)$ where m is the complexity of the curve.

Computing L

Lemma

The intersection curve L can be computed in time $O^{*}(n+m)$ where m is the complexity of the curve.

What is the worst case scenario for m ?

Computing L

Lemma

The intersection curve L can be computed in time $O^{*}(n+m)$ where m is the complexity of the curve.

What is the worst case scenario for m ?

- If R and B are just in general position, m is $\Theta\left(h_{3}(n)\right)$, where $h_{3}(n)$ is the maximum number of halving planes in a set of n points in \mathbb{R}^{3}. Best known bound is $O\left(n^{\frac{5}{2}}\right)$ [Sharir, Smorodinsky, Tardos; '01].

Computing L

Lemma

The intersection curve L can be computed in time $O^{*}(n+m)$ where m is the complexity of the curve.

What is the worst case scenario for m ?

- If R and B are just in general position, m is $\Theta\left(h_{3}(n)\right)$, where $h_{3}(n)$ is the maximum number of halving planes in a set of n points in \mathbb{R}^{3}. Best known bound is $O\left(n^{\frac{5}{2}}\right)$ [Sharir, Smorodinsky, Tardos; '01].
- Under our separation assumptions on R and B, m is

$$
\Theta(n \underbrace{h_{2}(n)}_{O\left(n^{4 / 3}\right)})=O\left(n^{7 / 3}\right)
$$

The Algorithm

Geometric Idea

Alternating Sums

Goal: Find a pair of points in L whose dual planes simultaneously four-partition R and B in the primal.

Alternating Sums

Goal: Find a pair of points in L whose dual planes simultaneously four-partition R and B in the primal.

For a (dual) point $p \in \mathbb{R}^{3}$, denote by R_{p}^{+}the set of red planes strictly above $p\left(R_{p}^{-}, B_{p}^{ \pm}\right.$defined in similar fashion).

Alternating Sums

Goal: Find a pair of points in L whose dual planes simultaneously four-partition R and B in the primal.

For a (dual) point $p \in \mathbb{R}^{3}$, denote by R_{p}^{+}the set of red planes strictly above $p\left(R_{p}^{-}, B_{p}^{ \pm}\right.$defined in similar fashion).
For a pair of points $p, q \in L$, their red/blue alternating sum is

$$
\begin{aligned}
& X(p, q)=\left|R_{p}^{+} \cap R_{q}^{+}\right|-\left|R_{p}^{-} \cap R_{q}^{+}\right|-\left|R_{p}^{+} \cap R_{q}^{-}\right|+\left|R_{p}^{-} \cap R_{q}^{-}\right| \\
& Y(p, q)=\left|B_{p}^{+} \cap B_{q}^{+}\right|-\left|B_{p}^{-} \cap B_{q}^{+}\right|-\left|B_{p}^{+} \cap B_{q}^{-}\right|+\left|B_{p}^{-} \cap B_{q}^{-}\right|
\end{aligned}
$$

Alternating Sums

Goal: Find a pair of points in L whose dual planes simultaneously four-partition R and B in the primal.

For a (dual) point $p \in \mathbb{R}^{3}$, denote by R_{p}^{+}the set of red planes strictly above $p\left(R_{p}^{-}, B_{p}^{ \pm}\right.$defined in similar fashion).

For a pair of points $p, q \in L$, their red/blue alternating sum is

$$
\begin{aligned}
& X(p, q)=\left|R_{p}^{+} \cap R_{q}^{+}\right|-\left|R_{p}^{-} \cap R_{q}^{+}\right|-\left|R_{p}^{+} \cap R_{q}^{-}\right|+\left|R_{p}^{-} \cap R_{q}^{-}\right| \\
& Y(p, q)=\left|B_{p}^{+} \cap B_{q}^{+}\right|-\left|B_{p}^{-} \cap B_{q}^{+}\right|-\left|B_{p}^{+} \cap B_{q}^{-}\right|+\left|B_{p}^{-} \cap B_{q}^{-}\right|
\end{aligned}
$$

Lemma

Two planes h_{1}, h_{2} simultaneously 4-partition R and B if and only if their duals $h_{1}^{\star}, h_{2}^{\star}$ lie on L and $X\left(h_{1}^{\star}, h_{2}^{\star}\right)=Y\left(h_{1}^{\star}, h_{2}^{\star}\right)=0$.

The Geometric Idea

Using the alternating sums, we can define a map $\pi: L^{2} \rightarrow \mathbb{R}^{2}$,
$(p, q) \mapsto(X(p, q), Y(p, q))$.

The Geometric Idea

The Geometric Idea

The Geometric Idea

The Geometric Idea

Complexity of the Algorithm

Step 0: Compute L $O^{*}(n+m)$

Complexity of the Algorithm

Step 0: Compute L
$O^{*}(n+m)$
Step 1: Fix $C=T$ and compute $\pi(C)$; if it meets 0 we stop. $\quad O(n+m)$

Complexity of the Algorithm

Step 0: Compute L
$O^{*}(n+m)$
Step 1: Fix $C=T$ and compute $\pi(C)$; if it meets 0 we stop. $O(n+m)$
Step 2: Construct two simple curves C_{1}, C_{2} by cutting C vertically or horizontally.

Complexity of the Algorithm

Step 0: Compute L

$$
O^{*}(n+m)
$$

Step 1: Fix $C=T$ and compute $\pi(C)$; if it meets 0 we stop. $\quad O(n+m)$
Step 2: Construct two simple curves C_{1}, C_{2} by cutting C vertically or horizontally.
Step 3: Compute $\pi\left(C_{1}\right)$ and $\pi\left(C_{2}\right)$; if either C_{1} or C_{2} meets 0 we have found a solution and stop.

$$
O\left(n+\left|C_{1}\right|+\left|C_{2}\right|\right)
$$

Complexity of the Algorithm

Step 0: Compute L $O^{*}(n+m)$
Step 1: Fix $C=T$ and compute $\pi(C)$; if it meets 0 we stop. $O(n+m)$
Step 2: Construct two simple curves C_{1}, C_{2} by cutting C vertically or horizontally.
Step 3: Compute $\pi\left(C_{1}\right)$ and $\pi\left(C_{2}\right)$; if either C_{1} or C_{2} meets 0 we have found a solution and stop.

$$
O\left(n+\left|C_{1}\right|+\left|C_{2}\right|\right)
$$

Step 4: Compute $\omega\left(C_{1}\right)$ and $\omega\left(C_{2}\right)$. Replace C with the one with odd winding number and go to Step 2.

$$
O\left(n+\left|C_{1}\right|+\left|C_{2}\right|\right)
$$

Complexity of the Algorithm

Step 0: Compute L $O^{*}(n+m)$
Step 1: Fix $C=T$ and compute $\pi(C)$; if it meets 0 we stop. $O(n+m)$
Step 2: Construct two simple curves C_{1}, C_{2} by cutting C vertically or horizontally.
Step 3: Compute $\pi\left(C_{1}\right)$ and $\pi\left(C_{2}\right)$; if either C_{1} or C_{2} meets 0 we have found a solution and stop.

$$
O\left(n+\left|C_{1}\right|+\left|C_{2}\right|\right)
$$

Step 4: Compute $\omega\left(C_{1}\right)$ and $\omega\left(C_{2}\right)$. Replace C with the one with odd winding number and go to Step 2.

$$
O\left(n+\left|C_{1}\right|+\left|C_{2}\right|\right)
$$

Total cost: $|C|$ is always $O(m)$ and we loop at most $O(\log m)$ times \Rightarrow $O^{*}(n+m)$.

Complexity of the Algorithm

Step 0: Compute L

$$
O^{*}(n+m)
$$

Step 1: Fix $C=T$ and compute $\pi(C)$; if it meets 0 we stop. $\quad O(n+m)$
Step 2: Construct two simple curves C_{1}, C_{2} by cutting C vertically or horizontally.
Step 3: Compute $\pi\left(C_{1}\right)$ and $\pi\left(C_{2}\right)$; if either C_{1} or C_{2} meets 0 we have found a solution and stop.

$$
O\left(n+\left|C_{1}\right|+\left|C_{2}\right|\right)
$$

Step 4: Compute $\omega\left(C_{1}\right)$ and $\omega\left(C_{2}\right)$. Replace C with the one with odd winding number and go to Step 2.

$$
O\left(n+\left|C_{1}\right|+\left|C_{2}\right|\right)
$$

Total cost: $|C|$ is always $O(m)$ and we loop at most $O(\log m)$ times \Rightarrow $O^{*}(n+m)$.
Since m is $\Theta\left(n h_{2}(n)\right)$ and $h_{2}(n)$ is $O\left(n^{\frac{4}{3}}\right)$ we have the desired $O^{*}\left(n^{\frac{7}{3}}\right)$ running time.

Where to go from here. . .

Hard questions:

- Is it always possible to equipartition a nice measure/point set in \mathbb{R}^{4} ?
- Better characterize the asymptotic behaviour of $h_{2}(n)$ and $h_{3}(n)$.

Where to go from here. . .

Hard questions:

- Is it always possible to equipartition a nice measure/point set in \mathbb{R}^{4} ?
- Better characterize the asymptotic behaviour of $h_{2}(n)$ and $h_{3}(n)$.
(Potentially) easier questions:
- Is it possible to compute a solution in $o\left(n h_{2}(n)\right)$?
- Find an algorithm for the other "types" of equipartitions (e.g. orthogonality condition or prescribed intersection).

Thank You!

[^0]: ${ }^{2}$ Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].

[^1]: ${ }^{2}$ Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].

[^2]: ${ }^{2}$ Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].

[^3]: ${ }^{2}$ [Edelsbrunner; '86] and [Yao, Dobkin, Edelsbrunner, Paterson; '89]

