
8-Partitioning Points in 3D, and E�ciently

Too

Gianluca Tasinato

ISTA

Joint work with:

B. Aronov, A. Basit, I. Ramesh, U. Wagner

SoCG - Session 9B

Prelude: Ham-Sandwich Theorem

1

Prelude: Ham-Sandwich Theorem

Theorem (Ham-Sandwich Theorem)

Let µ1, . . . , µd nice �nite measures1 on Rd . Then there is an a�ne

hyperplane H = {p ∈ Rd | ⟨x , p⟩ = a} that simultaneously bisects all

the measures; i.e., for any i ≤ d ,

µi ({p ∈ Rd | ⟨x , p⟩ > a}) = µi ({p ∈ Rd | ⟨x , p⟩ < a})

1E.g. µi uniform probability measure on convex body.

1

Prelude: Ham-Sandwich Theorem

Theorem (Ham-Sandwich Theorem)

Let µ1, . . . , µd nice �nite measures1 on Rd . Then there is an a�ne

hyperplane H = {p ∈ Rd | ⟨x , p⟩ = a} that simultaneously bisects all

the measures; i.e., for any i ≤ d ,

µi ({p ∈ Rd | ⟨x , p⟩ > a}) = µi ({p ∈ Rd | ⟨x , p⟩ < a})

1E.g. µi uniform probability measure on convex body.

1

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on Rd , is it possible to �nd a d-tuple of

a�ne hyperplanes such that the total mass of every open orthant is 1

2d
?

2

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on Rd , is it possible to �nd a d-tuple of

a�ne hyperplanes such that the total mass of every open orthant is 1

2d
?

d = 2: Yes (by Ham-Sandwich theorem)

2

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on Rd , is it possible to �nd a d-tuple of

a�ne hyperplanes such that the total mass of every open orthant is 1

2d
?

d = 2: Yes (by Ham-Sandwich theorem)

2

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on Rd , is it possible to �nd a d-tuple of

a�ne hyperplanes such that the total mass of every open orthant is 1

2d
?

d = 2: Yes (by Ham-Sandwich theorem)

2

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on Rd , is it possible to �nd a d-tuple of

a�ne hyperplanes such that the total mass of every open orthant is 1

2d
?

d = 3: Yes, even when asking that:

▶ one plane has a prescribed normal direction [Hadwiger; '66].2

2Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].

2

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on Rd , is it possible to �nd a d-tuple of

a�ne hyperplanes such that the total mass of every open orthant is 1

2d
?

d = 3: Yes, even when asking that:

▶ one plane has a prescribed normal direction [Hadwiger; '66].2

▶ one plane is orthogonal to the other two [Blagojevi¢, Karasev; '16].

2Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].

2

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on Rd , is it possible to �nd a d-tuple of

a�ne hyperplanes such that the total mass of every open orthant is 1

2d
?

d = 3: Yes, even when asking that:

▶ one plane has a prescribed normal direction [Hadwiger; '66].2

▶ one plane is orthogonal to the other two [Blagojevi¢, Karasev; '16].

Theorem (Aronov, Basit, Ramesh, T., Wagner; '24+)

It is always possible to �nd a triple of planes where the intersection line

of two of them has a prescribed direction.

2Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].

2

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on Rd , is it possible to �nd a d-tuple of

a�ne hyperplanes such that the total mass of every open orthant is 1

2d
?

2

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on Rd , is it possible to �nd a d-tuple of

a�ne hyperplanes such that the total mass of every open orthant is 1

2d
?

d = 4: the problem is still open. It is not known if an equipartition

always exists.

2

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on Rd , is it possible to �nd a d-tuple of

a�ne hyperplanes such that the total mass of every open orthant is 1

2d
?

d ≥ 5: the problem is overconstrained (d2 degrees of freedom, 2d − 1

constraints). Explicit counterexample due to [Avis; '86].

2

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set P ⊆ Rd of n points in general position, is it always possible

to �nd a d-tuple of a�ne hyperplanes such that every open orthant

contains at most
⌊

n
2d

⌋
points in P?

Ex: d = 2 In general, existence of an equipartition for the continuous

problem implies existence for discrete version.

3

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set P ⊆ Rd of n points in general position, is it always possible

to �nd a d-tuple of a�ne hyperplanes such that every open orthant

contains at most
⌊

n
2d

⌋
points in P?

Ex: d = 2

In general, existence of an equipartition for the continuous problem

implies existence for discrete version.

3

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set P ⊆ Rd of n points in general position, is it always possible

to �nd a d-tuple of a�ne hyperplanes such that every open orthant

contains at most
⌊

n
2d

⌋
points in P?

Ex: d = 2

In general, existence of an equipartition for the continuous problem

implies existence for discrete version.

3

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set P ⊆ Rd of n points in general position, is it always possible

to �nd a d-tuple of a�ne hyperplanes such that every open orthant

contains at most
⌊

n
2d

⌋
points in P?

Ex: d = 2

In general, existence of an equipartition for the continuous problem

implies existence for discrete version.

3

Computing 8-partitions

Computational Complexity of the discrete Grünbaum problem

Problem

Let P be a set of n points in general position in R3, compute an

8-partition, i.e. a triple of planes (H1,H2,H3) such that every open

orthant contains at most
⌊
n
8

⌋
points in P.

A brute-force algorithm that checks all possible triple of planes �nds a

solution in O(n9).

In the '80, an algorithm2 that computes in O(n6) a solution with

prescribed normal for one of the planes was obtained.

2[Edelsbrunner; '86] and [Yao, Dobkin, Edelsbrunner, Paterson; '89]

4

Computational Complexity of the discrete Grünbaum problem

Problem

Let P be a set of n points in general position in R3, compute an

8-partition, i.e. a triple of planes (H1,H2,H3) such that every open

orthant contains at most
⌊
n
8

⌋
points in P.

A brute-force algorithm that checks all possible triple of planes �nds a

solution in O(n9).

In the '80, an algorithm2 that computes in O(n6) a solution with

prescribed normal for one of the planes was obtained.

2[Edelsbrunner; '86] and [Yao, Dobkin, Edelsbrunner, Paterson; '89]

4

Computational Complexity of the discrete Grünbaum problem

Problem

Let P be a set of n points in general position in R3, compute an

8-partition, i.e. a triple of planes (H1,H2,H3) such that every open

orthant contains at most
⌊
n
8

⌋
points in P.

A brute-force algorithm that checks all possible triple of planes �nds a

solution in O(n9).

In the '80, an algorithm2 that computes in O(n6) a solution with

prescribed normal for one of the planes was obtained.

2[Edelsbrunner; '86] and [Yao, Dobkin, Edelsbrunner, Paterson; '89]

4

Speed Up

Theorem (Aronov, Basit, Ramesh, T., Wagner; '24+)

Let P ⊆ R3 a set of n points in general position and v ∈ S2. Then

there is an algorithm that computes an eight-partition (H1,H2,H3) of P

with v the normal vector of H1 in time O∗(nh2(n)) ≤ O∗(n
7

3); where

O∗(·) hides polylog factors and h2(n) = max number of halving lines of

a planar set of n points.

Note: the asymptotic behaviour of h2(n) is not known. Best bounds are:

� O(n
4

3) [Dey; '97];

� Ω(ne
√
log n) [Tóth; '01]

5

Speed Up

Theorem (Aronov, Basit, Ramesh, T., Wagner; '24+)

Let P ⊆ R3 a set of n points in general position and v ∈ S2. Then

there is an algorithm that computes an eight-partition (H1,H2,H3) of P

with v the normal vector of H1 in time O∗(nh2(n)) ≤ O∗(n
7

3); where

O∗(·) hides polylog factors and h2(n) = max number of halving lines of

a planar set of n points.

Note: the asymptotic behaviour of h2(n) is not known. Best bounds are:

� O(n
4

3) [Dey; '97];

� Ω(ne
√
log n) [Tóth; '01]

5

The Algorithm

Preliminaries

Properties of the Point Set

�: We start by �nding a plane that bisects P and it has v as its normal.

This divides P in two sets R (points above) and B (points below); we

can search for a solution among pairs of planes that simultaneously bisect

both R and B.

Without loss of generality, the �rst plane is horizontal; up to adding

�dummy� points, we can also assume n = 8k + 7.

By applying a suitable generic linear transformation we can assume that

R ⊆ {x > 0, z > 0} and B ⊆ {x < 0, z < 0}.

6

Properties of the Point Set

�: We start by �nding a plane that bisects P and it has v as its normal.

This divides P in two sets R (points above) and B (points below); we

can search for a solution among pairs of planes that simultaneously bisect

both R and B.

Without loss of generality, the �rst plane is horizontal; up to adding

�dummy� points, we can also assume n = 8k + 7.

By applying a suitable generic linear transformation we can assume that

R ⊆ {x > 0, z > 0} and B ⊆ {x < 0, z < 0}.

6

Properties of the Point Set

�: We start by �nding a plane that bisects P and it has v as its normal.

This divides P in two sets R (points above) and B (points below); we

can search for a solution among pairs of planes that simultaneously bisect

both R and B.

Without loss of generality, the �rst plane is horizontal; up to adding

�dummy� points, we can also assume n = 8k + 7.

By applying a suitable generic linear transformation we can assume that

R ⊆ {x > 0, z > 0} and B ⊆ {x < 0, z < 0}.

6

Properties of the Point Set

�: We start by �nding a plane that bisects P and it has v as its normal.

This divides P in two sets R (points above) and B (points below); we

can search for a solution among pairs of planes that simultaneously bisect

both R and B.

Without loss of generality, the �rst plane is horizontal; up to adding

�dummy� points, we can also assume n = 8k + 7.

By applying a suitable generic linear transformation we can assume that

R ⊆ {x > 0, z > 0} and B ⊆ {x < 0, z < 0}.

6

Duality

By dualizing, R and B are transformed to an arrangement of planes

A(R) and A(B).

A (primal) plane bisects R (resp. B) i� the corresponding dual point has

half of the planes in A(R) (resp. A(B)) above and half below, i.e. it lies

on the median level.

7

Duality

By dualizing, R and B are transformed to an arrangement of planes

A(R) and A(B).

A (primal) plane bisects R (resp. B) i� the corresponding dual point has

half of the planes in A(R) (resp. A(B)) above and half below, i.e. it lies

on the median level.

7

The Intersection Curve

Any plane in a solution has to simultaneously bisects both R and B,

hence its dual point has to belong to L, the intersection of the median

levels of A(R) and A(B).

Lemma

Under the hypothesis on R and B, L is a connected y -monotone curve.

8

The Intersection Curve

Any plane in a solution has to simultaneously bisects both R and B,

hence its dual point has to belong to L, the intersection of the median

levels of A(R) and A(B).

Lemma

Under the hypothesis on R and B, L is a connected y -monotone curve.

8

The Intersection Curve

Lemma

Under the hypothesis on R and B, L is a connected y -monotone curve.

Proof [�]:

A(R)

A(B)

{y = d}

L

8

Computing L

Lemma

The intersection curve L can be computed in time O∗(n +m) where m

is the complexity of the curve.

What is the worst case scenario for m?

▶ If R and B are just in general position, m is Θ(h3(n)), where h3(n)

is the maximum number of halving planes in a set of n points in R3.

Best known bound is O(n
5

2) [Sharir, Smorodinsky, Tardos; '01].

▶ Under our separation assumptions on R and B, m is

Θ(n h2(n)︸ ︷︷ ︸
O(n4/3)

) = O(n7/3).

9

Computing L

Lemma

The intersection curve L can be computed in time O∗(n +m) where m

is the complexity of the curve.

What is the worst case scenario for m?

▶ If R and B are just in general position, m is Θ(h3(n)), where h3(n)

is the maximum number of halving planes in a set of n points in R3.

Best known bound is O(n
5

2) [Sharir, Smorodinsky, Tardos; '01].

▶ Under our separation assumptions on R and B, m is

Θ(n h2(n)︸ ︷︷ ︸
O(n4/3)

) = O(n7/3).

9

Computing L

Lemma

The intersection curve L can be computed in time O∗(n +m) where m

is the complexity of the curve.

What is the worst case scenario for m?

▶ If R and B are just in general position, m is Θ(h3(n)), where h3(n)

is the maximum number of halving planes in a set of n points in R3.

Best known bound is O(n
5

2) [Sharir, Smorodinsky, Tardos; '01].

▶ Under our separation assumptions on R and B, m is

Θ(n h2(n)︸ ︷︷ ︸
O(n4/3)

) = O(n7/3).

9

Computing L

Lemma

The intersection curve L can be computed in time O∗(n +m) where m

is the complexity of the curve.

What is the worst case scenario for m?

▶ If R and B are just in general position, m is Θ(h3(n)), where h3(n)

is the maximum number of halving planes in a set of n points in R3.

Best known bound is O(n
5

2) [Sharir, Smorodinsky, Tardos; '01].

▶ Under our separation assumptions on R and B, m is

Θ(n h2(n)︸ ︷︷ ︸
O(n4/3)

) = O(n7/3).

9

The Algorithm

Geometric Idea

Alternating Sums

Goal: Find a pair of points in L whose dual planes simultaneously

four-partition R and B in the primal.

For a (dual) point p ∈ R3, denote by R+
p the set of red planes strictly

above p (R−
p ,B±

p de�ned in similar fashion).

For a pair of points p, q ∈ L, their red/blue alternating sum is

X (p, q) =
∣∣R+

p ∩ R+
q

∣∣− ∣∣R−
p ∩ R+

q

∣∣− ∣∣R+
p ∩ R−

q

∣∣+ ∣∣R−
p ∩ R−

q

∣∣
Y (p, q) =

∣∣B+
p ∩ B+

q

∣∣− ∣∣B−
p ∩ B+

q

∣∣− ∣∣B+
p ∩ B−

q

∣∣+ ∣∣B−
p ∩ B−

q

∣∣
Lemma

Two planes h1, h2 simultaneously 4-partition R and B if and only if

their duals h⋆
1
, h⋆

2
lie on L and X (h⋆

1
, h⋆

2
) = Y (h⋆

1
, h⋆

2
) = 0.

10

Alternating Sums

Goal: Find a pair of points in L whose dual planes simultaneously

four-partition R and B in the primal.

For a (dual) point p ∈ R3, denote by R+
p the set of red planes strictly

above p (R−
p ,B±

p de�ned in similar fashion).

For a pair of points p, q ∈ L, their red/blue alternating sum is

X (p, q) =
∣∣R+

p ∩ R+
q

∣∣− ∣∣R−
p ∩ R+

q

∣∣− ∣∣R+
p ∩ R−

q

∣∣+ ∣∣R−
p ∩ R−

q

∣∣
Y (p, q) =

∣∣B+
p ∩ B+

q

∣∣− ∣∣B−
p ∩ B+

q

∣∣− ∣∣B+
p ∩ B−

q

∣∣+ ∣∣B−
p ∩ B−

q

∣∣
Lemma

Two planes h1, h2 simultaneously 4-partition R and B if and only if

their duals h⋆
1
, h⋆

2
lie on L and X (h⋆

1
, h⋆

2
) = Y (h⋆

1
, h⋆

2
) = 0.

10

Alternating Sums

Goal: Find a pair of points in L whose dual planes simultaneously

four-partition R and B in the primal.

For a (dual) point p ∈ R3, denote by R+
p the set of red planes strictly

above p (R−
p ,B±

p de�ned in similar fashion).

For a pair of points p, q ∈ L, their red/blue alternating sum is

X (p, q) =
∣∣R+

p ∩ R+
q

∣∣− ∣∣R−
p ∩ R+

q

∣∣− ∣∣R+
p ∩ R−

q

∣∣+ ∣∣R−
p ∩ R−

q

∣∣
Y (p, q) =

∣∣B+
p ∩ B+

q

∣∣− ∣∣B−
p ∩ B+

q

∣∣− ∣∣B+
p ∩ B−

q

∣∣+ ∣∣B−
p ∩ B−

q

∣∣

Lemma

Two planes h1, h2 simultaneously 4-partition R and B if and only if

their duals h⋆
1
, h⋆

2
lie on L and X (h⋆

1
, h⋆

2
) = Y (h⋆

1
, h⋆

2
) = 0.

10

Alternating Sums

Goal: Find a pair of points in L whose dual planes simultaneously

four-partition R and B in the primal.

For a (dual) point p ∈ R3, denote by R+
p the set of red planes strictly

above p (R−
p ,B±

p de�ned in similar fashion).

For a pair of points p, q ∈ L, their red/blue alternating sum is

X (p, q) =
∣∣R+

p ∩ R+
q

∣∣− ∣∣R−
p ∩ R+

q

∣∣− ∣∣R+
p ∩ R−

q

∣∣+ ∣∣R−
p ∩ R−

q

∣∣
Y (p, q) =

∣∣B+
p ∩ B+

q

∣∣− ∣∣B−
p ∩ B+

q

∣∣− ∣∣B+
p ∩ B−

q

∣∣+ ∣∣B−
p ∩ B−

q

∣∣
Lemma

Two planes h1, h2 simultaneously 4-partition R and B if and only if

their duals h⋆
1
, h⋆

2
lie on L and X (h⋆

1
, h⋆

2
) = Y (h⋆

1
, h⋆

2
) = 0.

10

The Geometric Idea

Using the alternating sums, we can de�ne a map π : L2 → R2,

(p, q) 7→ (X (p, q),Y (p, q)).

(x1, x1) (xm, x1)

(xm, xm)

π

11

The Geometric Idea

(x1, x1) (xm, x1)

(xm, xm)

π

11

The Geometric Idea

(x1, x1) (xm, x1)

(xm, xm)

ω(T) is odd

11

The Geometric Idea

C1

C2

11

The Geometric Idea

11

Complexity of the Algorithm

Step 0: Compute L O∗(n +m)

Step 1: Fix C = T and compute π(C); if it meets 0 we stop. O(n +m)

Step 2: Construct two simple curves C1,C2 by cutting C vertically or

horizontally. O(|C |)
Step 3: Compute π(C1) and π(C2); if either C1 or C2 meets 0 we have found

a solution and stop. O(n + |C1|+ |C2|)
Step 4: Compute ω(C1) and ω(C2). Replace C with the one with odd

winding number and go to Step 2. O(n + |C1|+ |C2|)

Total cost: |C | is always O(m) and we loop at most O(logm) times ⇒
O∗(n +m).

Since m is Θ(nh2(n)) and h2(n) is O(n
4

3) we have the desired O∗(n
7

3)

running time.

12

Complexity of the Algorithm

Step 0: Compute L O∗(n +m)

Step 1: Fix C = T and compute π(C); if it meets 0 we stop. O(n +m)

Step 2: Construct two simple curves C1,C2 by cutting C vertically or

horizontally. O(|C |)
Step 3: Compute π(C1) and π(C2); if either C1 or C2 meets 0 we have found

a solution and stop. O(n + |C1|+ |C2|)
Step 4: Compute ω(C1) and ω(C2). Replace C with the one with odd

winding number and go to Step 2. O(n + |C1|+ |C2|)

Total cost: |C | is always O(m) and we loop at most O(logm) times ⇒
O∗(n +m).

Since m is Θ(nh2(n)) and h2(n) is O(n
4

3) we have the desired O∗(n
7

3)

running time.

12

Complexity of the Algorithm

Step 0: Compute L O∗(n +m)

Step 1: Fix C = T and compute π(C); if it meets 0 we stop. O(n +m)

Step 2: Construct two simple curves C1,C2 by cutting C vertically or

horizontally. O(|C |)

Step 3: Compute π(C1) and π(C2); if either C1 or C2 meets 0 we have found

a solution and stop. O(n + |C1|+ |C2|)
Step 4: Compute ω(C1) and ω(C2). Replace C with the one with odd

winding number and go to Step 2. O(n + |C1|+ |C2|)

Total cost: |C | is always O(m) and we loop at most O(logm) times ⇒
O∗(n +m).

Since m is Θ(nh2(n)) and h2(n) is O(n
4

3) we have the desired O∗(n
7

3)

running time.

12

Complexity of the Algorithm

Step 0: Compute L O∗(n +m)

Step 1: Fix C = T and compute π(C); if it meets 0 we stop. O(n +m)

Step 2: Construct two simple curves C1,C2 by cutting C vertically or

horizontally. O(|C |)
Step 3: Compute π(C1) and π(C2); if either C1 or C2 meets 0 we have found

a solution and stop. O(n + |C1|+ |C2|)

Step 4: Compute ω(C1) and ω(C2). Replace C with the one with odd

winding number and go to Step 2. O(n + |C1|+ |C2|)

Total cost: |C | is always O(m) and we loop at most O(logm) times ⇒
O∗(n +m).

Since m is Θ(nh2(n)) and h2(n) is O(n
4

3) we have the desired O∗(n
7

3)

running time.

12

Complexity of the Algorithm

Step 0: Compute L O∗(n +m)

Step 1: Fix C = T and compute π(C); if it meets 0 we stop. O(n +m)

Step 2: Construct two simple curves C1,C2 by cutting C vertically or

horizontally. O(|C |)
Step 3: Compute π(C1) and π(C2); if either C1 or C2 meets 0 we have found

a solution and stop. O(n + |C1|+ |C2|)
Step 4: Compute ω(C1) and ω(C2). Replace C with the one with odd

winding number and go to Step 2. O(n + |C1|+ |C2|)

Total cost: |C | is always O(m) and we loop at most O(logm) times ⇒
O∗(n +m).

Since m is Θ(nh2(n)) and h2(n) is O(n
4

3) we have the desired O∗(n
7

3)

running time.

12

Complexity of the Algorithm

Step 0: Compute L O∗(n +m)

Step 1: Fix C = T and compute π(C); if it meets 0 we stop. O(n +m)

Step 2: Construct two simple curves C1,C2 by cutting C vertically or

horizontally. O(|C |)
Step 3: Compute π(C1) and π(C2); if either C1 or C2 meets 0 we have found

a solution and stop. O(n + |C1|+ |C2|)
Step 4: Compute ω(C1) and ω(C2). Replace C with the one with odd

winding number and go to Step 2. O(n + |C1|+ |C2|)

Total cost: |C | is always O(m) and we loop at most O(logm) times ⇒
O∗(n +m).

Since m is Θ(nh2(n)) and h2(n) is O(n
4

3) we have the desired O∗(n
7

3)

running time.

12

Complexity of the Algorithm

Step 0: Compute L O∗(n +m)

Step 1: Fix C = T and compute π(C); if it meets 0 we stop. O(n +m)

Step 2: Construct two simple curves C1,C2 by cutting C vertically or

horizontally. O(|C |)
Step 3: Compute π(C1) and π(C2); if either C1 or C2 meets 0 we have found

a solution and stop. O(n + |C1|+ |C2|)
Step 4: Compute ω(C1) and ω(C2). Replace C with the one with odd

winding number and go to Step 2. O(n + |C1|+ |C2|)

Total cost: |C | is always O(m) and we loop at most O(logm) times ⇒
O∗(n +m).

Since m is Θ(nh2(n)) and h2(n) is O(n
4

3) we have the desired O∗(n
7

3)

running time.

12

Where to go from here. . .

Hard questions:

� Is it always possible to equipartition a nice measure/point set in R4?

� Better characterize the asymptotic behaviour of h2(n) and h3(n).

(Potentially) easier questions:

� Is it possible to compute a solution in o(nh2(n))?

� Find an algorithm for the other �types� of equipartitions (e.g.

orthogonality condition or prescribed intersection).

13

Where to go from here. . .

Hard questions:

� Is it always possible to equipartition a nice measure/point set in R4?

� Better characterize the asymptotic behaviour of h2(n) and h3(n).

(Potentially) easier questions:

� Is it possible to compute a solution in o(nh2(n))?

� Find an algorithm for the other �types� of equipartitions (e.g.

orthogonality condition or prescribed intersection).

13

Thank You!

	Computing 8-partitions
	The Algorithm
	Preliminaries
	Geometric Idea

