8-Partitioning Points in 3D, and Efficiently Too

Gianluca Tasinato

ISTA

Joint work with: B. Aronov, A. Basit, I. Ramesh, U. Wagner

Prelude: Ham-Sandwich Theorem

Prelude: Ham-Sandwich Theorem

Theorem (Ham-Sandwich Theorem)

Let μ_1, \ldots, μ_d nice finite measures¹ on \mathbb{R}^d . Then there is an affine hyperplane $H = \{p \in \mathbb{R}^d \mid \langle x, p \rangle = a\}$ that simultaneously bisects all the measures; i.e., for any $i \leq d$,

$$\mu_i(\{p \in \mathbb{R}^d \mid \langle x, p \rangle > a\}) = \mu_i(\{p \in \mathbb{R}^d \mid \langle x, p \rangle < a\})$$

¹E.g. μ_i uniform probability measure on convex body.

Prelude: Ham-Sandwich Theorem

Theorem (Ham-Sandwich Theorem)

Let μ_1, \ldots, μ_d nice finite measures¹ on \mathbb{R}^d . Then there is an affine hyperplane $H = \{p \in \mathbb{R}^d \mid \langle x, p \rangle = a\}$ that simultaneously bisects all the measures; i.e., for any $i \leq d$,

$$\mu_i(\{p \in \mathbb{R}^d \mid \langle x, p \rangle > a\}) = \mu_i(\{p \in \mathbb{R}^d \mid \langle x, p \rangle < a\})$$

¹E.g. μ_i uniform probability measure on convex body.

Given a nice probability measure on \mathbb{R}^d , is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^d}$?

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^d , is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^d}$?

d = 2: Yes (by Ham-Sandwich theorem)

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^d , is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^d}$?

d = 2: Yes (by Ham-Sandwich theorem)

Grünbaum's Partitioning Problem (Continuous Version)

Problem (Grünbaum; '60)

Given a nice probability measure on \mathbb{R}^d , is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^d}$?

d = 2: Yes (by Ham-Sandwich theorem)

Given a nice probability measure on \mathbb{R}^d , is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^d}$?

d = 3: Yes, even when asking that:

▶ one plane has a prescribed normal direction [Hadwiger; '66].²

²Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].

Given a nice probability measure on \mathbb{R}^d , is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^d}$?

- d = 3: Yes, even when asking that:
- ▶ one plane has a prescribed normal direction [Hadwiger; '66].²
- ▶ one plane is orthogonal to the other two [Blagojević, Karasev; '16].

²Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].

Given a nice probability measure on \mathbb{R}^d , is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^d}$?

d = 3: Yes, even when asking that:

- ▶ one plane has a prescribed normal direction [Hadwiger; '66].²
- ▶ one plane is orthogonal to the other two [Blagojević, Karasev; '16].

Theorem (Aronov, Basit, Ramesh, T., Wagner; '24+)

It is always possible to find a triple of planes where the intersection line of two of them has a prescribed direction.

²Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].

Given a nice probability measure on \mathbb{R}^d , is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^d}$?

Given a nice probability measure on \mathbb{R}^d , is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^d}$?

d = 4: the problem is still open. It is not known if an equipartition always exists.

Given a nice probability measure on \mathbb{R}^d , is it possible to find a d-tuple of affine hyperplanes such that the total mass of every open orthant is $\frac{1}{2^d}$?

 $d \ge 5$: the problem is overconstrained (d^2 degrees of freedom, $2^d - 1$ constraints). Explicit counterexample due to [Avis; '86].

Given a set $P \subseteq \mathbb{R}^d$ of n points in general position, is it always possible to find a d-tuple of affine hyperplanes such that every open orthant contains at most $\lfloor \frac{n}{2^d} \rfloor$ points in P?

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set $P \subseteq \mathbb{R}^d$ of n points in general position, is it always possible to find a d-tuple of affine hyperplanes such that every open orthant contains at most $\left|\frac{n}{2^d}\right|$ points in P?

Ex: d = 2

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set $P \subseteq \mathbb{R}^d$ of n points in general position, is it always possible to find a d-tuple of affine hyperplanes such that every open orthant contains at most $\left|\frac{n}{2^d}\right|$ points in P?

Grünbaum's Partitioning Problem (Discrete Version)

Problem

Given a set $P \subseteq \mathbb{R}^d$ of n points in general position, is it always possible to find a d-tuple of affine hyperplanes such that every open orthant contains at most $\left|\frac{n}{2^d}\right|$ points in P?

In general, existence of an equipartition for the continuous problem implies existence for discrete version.

Computing 8-partitions

Let *P* be a set of *n* points in general position in \mathbb{R}^3 , compute an 8-partition, i.e. a triple of planes (H_1, H_2, H_3) such that every open orthant contains at most $\left|\frac{n}{8}\right|$ points in *P*.

Let *P* be a set of *n* points in general position in \mathbb{R}^3 , compute an 8-partition, i.e. a triple of planes (H_1, H_2, H_3) such that every open orthant contains at most $\left|\frac{n}{8}\right|$ points in *P*.

A brute-force algorithm that checks all possible triple of planes finds a solution in $O(n^9)$.

Let *P* be a set of *n* points in general position in \mathbb{R}^3 , compute an 8-partition, i.e. a triple of planes (H_1, H_2, H_3) such that every open orthant contains at most $\left|\frac{n}{8}\right|$ points in *P*.

A brute-force algorithm that checks all possible triple of planes finds a solution in $O(n^9)$.

In the '80, an algorithm² that computes in $O(n^6)$ a solution with prescribed normal for one of the planes was obtained.

²[Edelsbrunner; '86] and [Yao, Dobkin, Edelsbrunner, Paterson; '89]

Theorem (Aronov, Basit, Ramesh, T., Wagner; '24+)

Let $P \subseteq \mathbb{R}^3$ a set of n points in general position and $v \in S^2$. Then there is an algorithm that computes an eight-partition (H_1, H_2, H_3) of Pwith v the normal vector of H_1 in time $O^*(nh_2(n)) \leq O^*(n^{\frac{7}{3}})$; where $O^*(\cdot)$ hides polylog factors and $h_2(n) = \max$ number of halving lines of a planar set of n points.

Theorem (Aronov, Basit, Ramesh, T., Wagner; '24+)

Let $P \subseteq \mathbb{R}^3$ a set of n points in general position and $v \in S^2$. Then there is an algorithm that computes an eight-partition (H_1, H_2, H_3) of Pwith v the normal vector of H_1 in time $O^*(nh_2(n)) \leq O^*(n^{\frac{7}{3}})$; where $O^*(\cdot)$ hides polylog factors and $h_2(n) = \max$ number of halving lines of a planar set of n points.

Note: the asymptotic behaviour of $h_2(n)$ is not known. Best bounds are:

- $O(n^{\frac{4}{3}})$ [Dey; '97];
- $\Omega(ne^{\sqrt{\log n}})$ [Tóth; '01]

The Algorithm

Preliminaries

Q: We start by finding a plane that bisects P and it has v as its normal. This divides P in two sets R (points above) and B (points below); we can search for a solution among pairs of planes that simultaneously bisect both R and B.

Without loss of generality, the first plane is horizontal; up to adding "dummy" points, we can also assume n = 8k + 7.

Without loss of generality, the first plane is horizontal; up to adding "dummy" points, we can also assume n = 8k + 7.

By applying a suitable generic linear transformation we can assume that $R \subseteq \{x > 0, z > 0\}$ and $B \subseteq \{x < 0, z < 0\}$.

Without loss of generality, the first plane is horizontal; up to adding "dummy" points, we can also assume n = 8k + 7.

By applying a suitable generic linear transformation we can assume that $R \subseteq \{x > 0, z > 0\}$ and $B \subseteq \{x < 0, z < 0\}$.

Duality

By dualizing, R and B are transformed to an arrangement of planes $\mathcal{A}(R)$ and $\mathcal{A}(B)$.

Duality

By dualizing, R and B are transformed to an arrangement of planes $\mathcal{A}(R)$ and $\mathcal{A}(B)$.

A (primal) plane bisects R (resp. B) iff the corresponding dual point has half of the planes in $\mathcal{A}(R)$ (resp. $\mathcal{A}(B)$) above and half below, i.e. it lies on the median level.

Any plane in a solution has to simultaneously bisects both R and B, hence its dual point has to belong to L, the intersection of the median levels of $\mathcal{A}(R)$ and $\mathcal{A}(B)$.

Any plane in a solution has to simultaneously bisects both R and B, hence its dual point has to belong to L, the intersection of the median levels of $\mathcal{A}(R)$ and $\mathcal{A}(B)$.

Lemma

Under the hypothesis on R and B, L is a connected y-monotone curve.

The Intersection Curve

Lemma

Under the hypothesis on R and B, L is a connected y-monotone curve.

Proof [**?**]:

The intersection curve L can be computed in time $O^*(n+m)$ where m is the complexity of the curve.

The intersection curve L can be computed in time $O^*(n+m)$ where m is the complexity of the curve.

What is the worst case scenario for m?

The intersection curve L can be computed in time $O^*(n+m)$ where m is the complexity of the curve.

What is the worst case scenario for m?

If *R* and *B* are just in general position, *m* is Θ(h₃(n)), where h₃(n) is the maximum number of halving planes in a set of *n* points in ℝ³. Best known bound is O(n^{5/2}) [Sharir, Smorodinsky, Tardos; '01].

The intersection curve L can be computed in time $O^*(n+m)$ where m is the complexity of the curve.

What is the worst case scenario for m?

If *R* and *B* are just in general position, *m* is Θ(h₃(n)), where h₃(n) is the maximum number of halving planes in a set of *n* points in ℝ³. Best known bound is O(n^{5/2}) [Sharir, Smorodinsky, Tardos; '01].

► Under our separation assumptions on *R* and *B*, *m* is $\Theta(n \underbrace{h_2(n)}_{O(n^{4/3})}) = O(n^{7/3}).$

The Algorithm

Geometric Idea

For a (dual) point $p \in \mathbb{R}^3$, denote by R_p^+ the set of red planes strictly above $p(R_p^-, B_p^{\pm}$ defined in similar fashion).

For a (dual) point $p \in \mathbb{R}^3$, denote by R_p^+ the set of red planes strictly above $p(R_p^-, B_p^{\pm}$ defined in similar fashion).

For a pair of points $p, q \in L$, their red/blue alternating sum is

$$\begin{split} X(p,q) &= \left| R_{p}^{+} \cap R_{q}^{+} \right| - \left| R_{p}^{-} \cap R_{q}^{+} \right| - \left| R_{p}^{+} \cap R_{q}^{-} \right| + \left| R_{p}^{-} \cap R_{q}^{-} \right| \\ Y(p,q) &= \left| B_{p}^{+} \cap B_{q}^{+} \right| - \left| B_{p}^{-} \cap B_{q}^{+} \right| - \left| B_{p}^{+} \cap B_{q}^{-} \right| + \left| B_{p}^{-} \cap B_{q}^{-} \right| \end{split}$$

For a (dual) point $p \in \mathbb{R}^3$, denote by R_p^+ the set of red planes strictly above $p(R_p^-, B_p^{\pm}$ defined in similar fashion).

For a pair of points $p, q \in L$, their red/blue alternating sum is

$$\begin{aligned} X(p,q) &= \left| R_{p}^{+} \cap R_{q}^{+} \right| - \left| R_{p}^{-} \cap R_{q}^{+} \right| - \left| R_{p}^{+} \cap R_{q}^{-} \right| + \left| R_{p}^{-} \cap R_{q}^{-} \right| \\ Y(p,q) &= \left| B_{p}^{+} \cap B_{q}^{+} \right| - \left| B_{p}^{-} \cap B_{q}^{+} \right| - \left| B_{p}^{+} \cap B_{q}^{-} \right| + \left| B_{p}^{-} \cap B_{q}^{-} \right| \end{aligned}$$

Lemma

Two planes h_1, h_2 simultaneously 4-partition R and B if and only if their duals h_1^*, h_2^* lie on L and $X(h_1^*, h_2^*) = Y(h_1^*, h_2^*) = 0$.

Using the alternating sums, we can define a map $\pi: L^2 \to \mathbb{R}^2$, $(p,q) \mapsto (X(p,q), Y(p,q))$.

Step 0: Compute L

 $O^{*}(n+m)$

Step 0: Compute L $O^*(n+m)$ Step 1: Fix C = T and compute $\pi(C)$; if it meets 0 we stop.O(n+m)

Step 0: Compute L $O^*(n+m)$ Step 1: Fix C = T and compute $\pi(C)$; if it meets 0 we stop.O(n+m)Step 2: Construct two simple curves C_1, C_2 by cutting C vertically or
horizontally.O(|C|)

 Step 0: Compute L
 $O^*(n+m)$

 Step 1: Fix C = T and compute $\pi(C)$; if it meets 0 we stop.
 O(n+m)

 Step 2: Construct two simple curves C_1, C_2 by cutting C vertically or horizontally.
 O(|C|)

Step 3: Compute $\pi(C_1)$ and $\pi(C_2)$; if either C_1 or C_2 meets 0 we have found a solution and stop. $O(n + |C_1| + |C_2|)$ Step 0: Compute L $O^*(n+m)$

- Step 1: Fix C = T and compute $\pi(C)$; if it meets 0 we stop. O(n+m)
- Step 2: Construct two simple curves C_1, C_2 by cutting C vertically or horizontally. O(|C|)
- Step 3: Compute $\pi(C_1)$ and $\pi(C_2)$; if either C_1 or C_2 meets 0 we have found a solution and stop. $O(n + |C_1| + |C_2|)$
- Step 4: Compute $\omega(C_1)$ and $\omega(C_2)$. Replace C with the one with odd winding number and go to Step 2. $O(n + |C_1| + |C_2|)$

Step 0: Compute L $O^*(n+m)$

- Step 1: Fix C = T and compute $\pi(C)$; if it meets 0 we stop. O(n+m)
- Step 2: Construct two simple curves C_1, C_2 by cutting C vertically or horizontally. O(|C|)
- Step 3: Compute $\pi(C_1)$ and $\pi(C_2)$; if either C_1 or C_2 meets 0 we have found a solution and stop. $O(n + |C_1| + |C_2|)$
- Step 4: Compute $\omega(C_1)$ and $\omega(C_2)$. Replace C with the one with odd winding number and go to Step 2. $O(n + |C_1| + |C_2|)$

Total cost: |C| is always O(m) and we loop at most $O(\log m)$ times $\Rightarrow O^*(n+m)$.

Step 0: Compute L $O^*(n+m)$

Step 1: Fix C = T and compute $\pi(C)$; if it meets 0 we stop. O(n+m)

Step 2: Construct two simple curves C_1, C_2 by cutting C vertically or horizontally. O(|C|)

Step 3: Compute $\pi(C_1)$ and $\pi(C_2)$; if either C_1 or C_2 meets 0 we have found a solution and stop. $O(n + |C_1| + |C_2|)$

Step 4: Compute $\omega(C_1)$ and $\omega(C_2)$. Replace C with the one with odd winding number and go to Step 2. $O(n + |C_1| + |C_2|)$

Total cost: |C| is always O(m) and we loop at most $O(\log m)$ times $\Rightarrow O^*(n+m)$.

Since *m* is $\Theta(nh_2(n))$ and $h_2(n)$ is $O(n^{\frac{4}{3}})$ we have the desired $O^*(n^{\frac{7}{3}})$ running time.

Hard questions:

- Is it always possible to equipartition a nice measure/point set in \mathbb{R}^4 ?
- Better characterize the asymptotic behaviour of $h_2(n)$ and $h_3(n)$.

Hard questions:

- Is it always possible to equipartition a nice measure/point set in $\mathbb{R}^4?$
- Better characterize the asymptotic behaviour of $h_2(n)$ and $h_3(n)$.

(Potentially) easier questions:

- Is it possible to compute a solution in $o(nh_2(n))$?
- Find an algorithm for the other "types" of equipartitions (e.g. orthogonality condition or prescribed intersection).

Thank You!