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Theorem (Ham-Sandwich Theorem)

Let iy, ..., g nice finite measures' on RY. Then there is an affine

hyperplane H = {p € RY | (x, p) = a} that simultaneously bisects all
the measures; i.e., for any i < d,

uil{p € RY | (x,p) > a}) = ui({p € R | (x,p) < a})

LE.g. p; uniform probability measure on convex body.
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d = 3: Yes, even when asking that:

» one plane has a prescribed normal direction [Hadwiger; '66].2

2Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].
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Griinbaum’s Partitioning Problem (Continuous Version)

Problem (Griinbaum; '60)

Given a nice probability measure on R?, is it possible to find a d-tuple of
affine hyperplanes such that the total mass of every open orthant is 2%, ?

d = 3: Yes, even when asking that:
» one plane has a prescribed normal direction [Hadwiger; '66].2
» one plane is orthogonal to the other two [Blagojevi¢, Karasev; '16].

Theorem (Aronov, Basit, Ramesh, T., Wagner; 24+)

It is always possible to find a triple of planes where the intersection line
of two of them has a prescribed direction.

2Rediscovered independently by [Yao, Dobkin, Edelsbrunner, Paterson; '89].
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Problem (Griinbaum; '60)

Given a nice probability measure on R?, is it possible to find a d-tuple of
affine hyperplanes such that the total mass of every open orthant is 2% ?

d = 4: the problem is still open. It is not known if an equipartition
always exists.



Griinbaum’s Partitioning Problem (Continuous Version)

Problem (Griinbaum; '60)

Given a nice probability measure on R?, is it possible to find a d-tuple of
affine hyperplanes such that the total mass of every open orthant is 2% ?

d > 5: the problem is overconstrained (d? degrees of freedom, 29 — 1
constraints). Explicit counterexample due to [Avis; '86].
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Problem

Given a set P C R? of n points in general position, is it always possible
to find a d-tuple of affine hyperplanes such that every open orthant
contains at most | 3% | points in P?
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Griinbaum's Partitioning Problem (Discrete Version)

Problem

Given a set P C R? of n points in general position, is it always possible
to find a d-tuple of affine hyperplanes such that every open orthant
contains at most | | points in P?

Ex: d =2

In general, existence of an equipartition for the continuous problem
implies existence for discrete version.
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Problem
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8-partition, i.e. a triple of planes (Hy, Ha, H3) such that every open
orthant contains at most | 2| points in P.
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Computational Complexity of the discrete Griinbaum problem

Problem

Let P be a set of n points in general position in R3, compute an
8-partition, i.e. a triple of planes (Hy, Ha, H3) such that every open
orthant contains at most | 2| points in P.

A brute-force algorithm that checks all possible triple of planes finds a
solution in O(n%).

In the '80, an algorithm? that computes in O(n®) a solution with
prescribed normal for one of the planes was obtained.

2[Edelsbrunner; '86] and [Yao, Dobkin, Edelsbrunner, Paterson; '89]



Theorem (Aronov, Basit, Ramesh, T., Wagner; '24+)

Let P C R? a set of n points in general position and v € S?. Then
there is an algorithm that computes an eight-partition (Hy, Ho, H3) of P
with v the normal vector of Hy in time O*(nhy(n)) < O*(n3); where

O*(+) hides polylog factors and hy(n) = max number of halving lines of
a planar set of n points.
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Let P C R? a set of n points in general position and v € S?. Then
there is an algorithm that computes an eight-partition (Hy, Ho, H3) of P
with v the normal vector of Hy in time O*(nhy(n)) < O*(n3); where

O*(+) hides polylog factors and hy(n) = max number of halving lines of
a planar set of n points.

Note: the asymptotic behaviour of hy(n) is not known. Best bounds are:
e O(n3) [Dey; '97];
e Q(nev'os™) [Toth; '01]
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can search for a solution among pairs of planes that simultaneously bisect
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By dualizing, R and B are transformed to an arrangement of planes

A(R) and A(B).



By dualizing, R and B are transformed to an arrangement of planes
A(R) and A(B).

A (primal) plane bisects R (resp. B) iff the corresponding dual point has
half of the planes in A(R) (resp. .A(B)) above and half below, i.e. it lies

on the median level.
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Any plane in a solution has to simultaneously bisects both R and B,
hence its dual point has to belong to L, the intersection of the median
levels of A(R) and A(B).

Lemma

Under the hypothesis on R and B, L is a connected y-monotone curve.



The Intersection Curve

Lemma

Under the hypothesis on R and B, L is a connected y-monotone curve.

Proof [Q]:

{y=d}
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Computing L

Lemma
The intersection curve L can be computed in time O*(n+ m) where m
is the complexity of the curve.

What is the worst case scenario for m?

» If R and B are just in general position, m is ©(hz(n)), where hz(n)
is the maximum number of halving planes in a set of n points in R3.
Best known bound is O(n?) [Sharir, Smorodinsky, Tardos; '01].

» Under our separation assumptions on R and B, mis
O(n hy(n)) = O(n"/3).
——

o(n*/3)
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Alternating Sums

Goal: Find a pair of points in L whose dual planes simultaneously
four-partition R and B in the primal.
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For a (dual) point p € R3, denote by R,j the set of red planes strictly
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Y(p,q)=|B N By |- |B, NBy| B nB;|+|B; nE]|
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Alternating Sums

Goal: Find a pair of points in L whose dual planes simultaneously
four-partition R and B in the primal.

For a (dual) point p € R3, denote by R,j the set of red planes strictly
above p (R, Bpi defined in similar fashion).

For a pair of points p, g € L, their red/blue alternating sum is
X(p,a) =|Ry N Ry | = Ry MRy = RSN Ry [+[R, N Ry |
Y(p,q) =|8; N B7| = |8, NBy|—[B; N B |+ B, N

Lemma
Two planes hy, hy simultaneously 4-partition R and B if and only if
their duals hy, h3 lie on L and X(ht, h3) = Y (hj, h3) = 0.

10



The Geometric Idea

Using the alternating sums, we can define a map 7 : [2 — R?,
(p,q) = (X(p, q), Y(p, q))-

(T, Tm)

(1, 21) (Tm, 1)
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(Tm, Tm)

(z1,21) (Tm, T1)
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The Geometric Idea

(xﬂla xm)

w(T) is odd

(w1, 21) (@, 21)
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Complexity of the Algorithm

Step 0: Compute L O*(n+ m)
Step 1: Fix C = T and compute 7(C); if it meets 0 we stop. O(n+ m)
Step 2: Construct two simple curves C;, G by cutting C vertically or
horizontally. o(|C))
Step 3: Compute 7(Cy) and w(G); if either Gy or C; meets 0 we have found
a solution and stop. O(n+ |G|+ |G))

Step 4: Compute w(Cy) and w(G,). Replace C with the one with odd
winding number and go to Step 2. O(n+ |G|+ |G))

Total cost: |C| is always O(m) and we loop at most O(log m) times =
O*(n+ m).

Since m is ©(nha(n)) and hy(n) is O(n3) we have the desired O*(n3)
running time.

12



Where to go from here. ..

Hard questions:

e Is it always possible to equipartition a nice measure/point set in R*?

e Better characterize the asymptotic behaviour of ha(n) and hz(n).
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Where to go from here. ..

Hard questions:

e Is it always possible to equipartition a nice measure/point set in R*?

e Better characterize the asymptotic behaviour of ha(n) and hz(n).
(Potentially) easier questions:

e Is it possible to compute a solution in o(nhy(n))?

e Find an algorithm for the other “types” of equipartitions (e.g.
orthogonality condition or prescribed intersection).
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Thank You!
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